Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

LMNA-Related Dilated Cardiomyopathy

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

LMNA-Related Dilated Cardiomyopathy

Ray E Hershberger et al.
Free Books & Documents

Excerpt

Clinical characteristics: LMNA-related dilated cardiomyopathy (DCM) is characterized by left ventricular enlargement and/or reduced systolic function preceded (sometimes by many years) by or accompanied by conduction system disease and/or arrhythmias. LMNA-related DCM usually presents in early to mid-adulthood with symptomatic conduction system disease or arrhythmias, or with symptomatic DCM including heart failure or embolus from a left ventricular mural thrombus. Sudden cardiac death can occur, and in some instances is the presenting manifestation; sudden cardiac death may occur with minimal or no systolic dysfunction.

Diagnosis/testing: The diagnosis of LMNA-related DCM is established in a proband with suggestive findings and a heterozygous pathogenic variant in LMNA identified by molecular genetic testing.

Management: Treatment of manifestations: Chronic atrial fibrillation is treated initially with attempts to restore normal sinus rhythm, anticoagulation, and rate control. Symptomatic supraventricular arrhythmias are usually treated with pharmacologic therapy or ablation; symptomatic bradyarrhythmias or significant heart block is treated with an electronic pacemaker. Symptomatic ventricular arrhythmias, ventricular tachycardia, ventricular fibrillation, and resuscitated sudden cardiac death are treated with an implantable cardioverter defibrillator (ICD) and drug therapy as needed. Because risk for sudden cardiac death in LMNA-related DCM accompanies heart block and bradyarrhythmias, ICD use (rather than just pacemaker use) has been recommended for all indications. Treatment of symptomatic DCM, including heart failure, is pharmacologic with ACE inhibitors, beta blockers, and other conventional approaches. Progressive deterioration in left ventricular function is treated with an ICD. Cardiac transplantation or other advanced therapies may be considered for refractory disease in persons receiving comprehensive care from cardiovascular disease experts.

Surveillance: Individuals with an LMNA pathogenic variant who are found to have any EKG abnormality should undergo a cardiovascular evaluation for disease progression (EKG, 24-48 hour rhythm monitoring, LV function measurement) at least annually. Asymptomatic individuals with a pathogenic LMNA variant should undergo cardiovascular evaluation (medical history, physical examination, echocardiogram, and EKG) every one to two years and/or whenever new symptoms arise. In families with a known LMNA pathogenic variant, at-risk individuals for whom genetic testing is not possible should have yearly cardiovascular evaluation. At onset of new symptoms an immediate evaluation for evidence of DCM and/or conduction system disease is indicated regardless of genetic status.

Evaluation of relatives at risk: To facilitate prompt diagnosis, targeted LMNA genetic testing when the family-specific pathogenic variant is known; otherwise regular surveillance with cardiovascular screening tests.

Pregnancy management: Pregnancy is contraindicated in women with DCM. Pregnant women with DCM should be followed by a high-risk obstetrician. At-risk women with unknown genetic status should undergo a cardiovascular evaluation and be offered genetic counseling, ideally prior to pregnancy.

Genetic counseling: LMNA-related DCM is inherited in an autosomal dominant manner. Some individuals diagnosed with LMNA-related DCM have an affected parent; the proportion of individuals with LMNA-related DCM caused by a de novo pathogenic variant is unknown. Each child of an individual with LMNA-related DCM has a 50% chance of inheriting the pathogenic variant. Once an LMNA pathogenic variant has been identified in an affected family member, prenatal testing and preimplantation genetic testing are possible.

PubMed Disclaimer

Similar articles

  • FBN1-Related Marfan Syndrome.
    Dietz H. Dietz H. 2001 Apr 18 [updated 2022 Feb 17]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2001 Apr 18 [updated 2022 Feb 17]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301510 Free Books & Documents. Review.
  • Catecholaminergic Polymorphic Ventricular Tachycardia.
    Napolitano C, Mazzanti A, Bloise R, Priori SG. Napolitano C, et al. 2004 Oct 14 [updated 2022 Jun 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Oct 14 [updated 2022 Jun 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301466 Free Books & Documents. Review.
  • Acute Intermittent Porphyria.
    Sardh E, Barbaro M. Sardh E, et al. 2005 Sep 27 [updated 2024 Feb 8]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2005 Sep 27 [updated 2024 Feb 8]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301372 Free Books & Documents. Review.
  • CACNA1C-Related Disorders.
    Napolitano C, Priori SG. Napolitano C, et al. 2006 Feb 15 [updated 2024 Dec 19]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2006 Feb 15 [updated 2024 Dec 19]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301577 Free Books & Documents. Review.
  • Familial Hypercholesterolemia.
    Ison HE, Clarke SL, Knowles JW. Ison HE, et al. 2014 Jan 2 [updated 2025 Jan 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2014 Jan 2 [updated 2025 Jan 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 24404629 Free Books & Documents. Review.

References

Published Guidelines/Consensus Statements

    1. Committee on Bioethics, Committee on Genetics, and American College of Medical Genetics and Genomics Social, Ethical, Legal Issues Committee. Ethical and policy issues in genetic testing and screening of children. Available online. 2013. Accessed 3-8-22. - PubMed
    1. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, Morales A, Taylor MRG, Vatta M, Ware SM, et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Available online. 2018. Accessed 3-8-22. - PubMed
    1. National Society of Genetic Counselors. Position statement on genetic testing of minors for adult-onset conditions. Available online. 2018. Accessed 3-8-22.
    1. Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM 3rd, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Available online. 2019. Accessed 3-8-22.

Literature Cited

    1. Bozkurt B, Hershberger RE, Butler J, Grady KL, Heidenreich PA, Isler ML, Kirklin JK, Weintraub WS. 2021 ACC/AHA key data elements and definitions for heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Heart Failure). J Am Coll Cardiol. 2021;77:2053–150. - PubMed
    1. Brodt C, Siegfried JD, Hofmeyer M, Martel J, Rampersaud E, Li D, Morales A, Hershberger RE. Temporal relationship of conduction system disease and ventricular dysfunction in LMNA cardiomyopathy. J Card Fail. 2013;19:233–9. - PMC - PubMed
    1. Chen SN, Sbaizero O, Taylor MRG, Mestroni L. Lamin A/C Cardiomyopathy: Implications for Treatment. Curr Cardiol Rep. 2019;21:160. - PubMed
    1. Cirino AL, Cuddy S, Lakdawala NK. Deletion of entire LMNA gene as a cause of cardiomyopathy. HeartRhythm Case Rep. 2020;6:395–7. - PMC - PubMed
    1. Cowan JR, Kinnamon DD, Morales A, Salyer L, Nickerson DA, Hershberger RE. Multigenic Disease and Bilineal Inheritance in Dilated Cardiomyopathy Is Illustrated in Nonsegregating LMNA Pedigrees. Circ Genom Precis Med. 2018;11:e002038. - PMC - PubMed

LinkOut - more resources