Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;56(3):194-201.
doi: 10.1007/s12630-009-9041-x. Epub 2009 Feb 7.

A simple method to adjust clinical prediction models to local circumstances

Affiliations

A simple method to adjust clinical prediction models to local circumstances

Kristel J M Janssen et al. Can J Anaesth. 2009 Mar.

Abstract

Introduction: Clinical prediction models estimate the risk of having or developing a particular outcome or disease. Researchers often develop a new model when a previously developed model is validated and the performance is poor. However, the model can be adjusted (updated) using the new data. The updated model is then based on both the development and validation data. We show how a simple updating method may suffice to update a clinical prediction model.

Methods: A prediction model that preoperatively predicts the risk of severe postoperative pain was developed with multivariable logistic regression from the data of 1944 surgical patients in the Academic Medical Center Amsterdam, the Netherlands. We studied the predictive performance of the model in 1,035 new patients, scheduled for surgery at a later time in the University Medical Center Utrecht, the Netherlands. We assessed the calibration (agreement between predicted risks and the observed frequencies of an outcome) and discrimination (ability of the model to distinguish between patients with and without postoperative pain). When the incidence of the outcome is different, all predicted risks may be systematically over- or underestimated. Hence, the intercept of the model can be adjusted (updating).

Results: The predicted risks were systematically higher than the observed frequencies, corresponding to a difference in the incidence of postoperative pain between the development (62%) and validation set (36%). The updated model resulted in better calibration.

Discussion: When a clinical prediction model in new patients does not show adequate performance, an alternative to developing a new model is to update the prediction model with new data. The updated model will be based on more patient data, and may yield better risk estimates.

Introduction: Les modèles de prédiction clinique évaluent le risque de présenter ou de manifester un devenir ou une maladie en particulier. Les chercheurs élaborent souvent un nouveau modèle lorsqu’un modèle élaboré précédemment est validé mais que ses performances sont peu concluantes. Toutefois, un modèle peut être ajusté (mis à jour) aux nouvelles données. Le modèle mis à jour est ensuite basé aussi bien sur les données d’élaboration que de validation. Nous montrons comment une méthode simple de mise à jour peut suffire à mettre à jour un modèle de prédiction clinique.

Méthode: Un modèle de prédiction qui prédit avant l’opération le risque de douleur postopératoire grave a été élaboré à l’aide de la méthode de régression logistique multivariée appliquée aux données de 1944 patients chirurgicaux du Centre médical universitaire d’Amsterdam, aux Pays-Bas. Nous avons étudié la performance prédictive du modèle chez 1 035 nouveaux patients qui devaient subir une chirurgie plus tard au Centre médical universitaire d’Utrecht, aux Pays-Bas. Nous avons évalué le calibrage (accord entre les risques prédits et les fréquences observées d’un devenir) et la discrimination (capacité du modèle de distinguer entre les patients avec ou sans douleurs postopératoires). Lorsque l’incidence du devenir est différente, tous les risques prédits peuvent être systématiquement sur- ou sous-estimés. Ainsi, le point d’intersection du modèle peut être ajusté (mise à jour).

Résultats: Les risques prédits étaient systématiquement plus élevés que les fréquences observées, ce qui correspond à une différence de l’incidence des douleurs postopératoires entre les données d’élaboration (62 %) et celles de validation (36 %). Le modèle mis à jour a généré un meilleur calibrage.

Conclusion: Lorsqu’un modèle de prédiction clinique chez de nouveaux patients ne génère pas une performance adaptée, une alternative à l’élaboration d’un nouveau modèle consiste en la mise à jour du modèle de prédiction avec de nouvelles données. Le modèle mis à jour sera basé sur davantage de données patients, et pourrait donner de meilleures estimations des risques.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Score chart to predict the risk of severe acute postoperative pain for inpatients and outpatients. The scores per predictor were derived by multiplying the regression coefficients by 5 and rounding to the nearest integer. A sum score can be calculated for each patient by adding the scores that correlate to the patient’s characteristics. The total sum score can be linked to the patient’s individual risk using the box in the lower part. Consider, for example, an inpatient setting (intercept = −0.42, corresponding score = 0), a female patient (β = −0.004, score = 0) of age 64 (β = −0.009 * 64 = −0.576, score = −3), with a preoperative pain score of 7 (β = 0.11 * 7 = 0.77, score = 4), who is scheduled for a high pain procedure (β = 1.05, score = 5) with a small expected incision size (β = 0, score = 0), who has a preoperative anxiety score of 16 (β = 0.05 * 16 = 0.8, score = 4), and a preoperative need for information score of 4 (β = −0.05 * 4 = −0.20, score = −1). The intercept plus the regression coefficients times the predictor values total 1.42 using the formula in Box 1, yielding a predicted risk of pain of 1/(1 + e−1.42) = 80%. The total score is 9, which results in a risk of postoperative pain of 81%. Reprinted with permission from Janssen et al.
Fig. 2
Fig. 2
Calibration line of the original prediction model in the development set (a), in the validation set (b), and the calibration line of the original prediction model with adjusted intercept in the validation set (c). Triangles indicate the observed frequency of severe acute postoperative pain per decile of predicted risk. The solid line shows the relation between observed outcomes and predicted risks. Ideally, this line equals the dotted line that represents perfect calibration, where the predicted risks equal the observed frequencies of severe postoperative pain. Reprinted with permission from Janssen et al.

Similar articles

Cited by

References

    1. Randolph AG, Guyatt GH, Calvin JE, Doig DVM, Richardson WS. Understanding articles describing clinical prediction tools. Evidence Based Medicine in Critical Care Group. Crit Care Med. 1998;26:1603–1612. doi: 10.1097/00003246-199809000-00036. - DOI - PubMed
    1. Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA. 1997;277:488–494. doi: 10.1001/jama.277.6.488. - DOI - PubMed
    1. Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med. 2006;144:201–209. - PubMed
    1. Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg. 1953;32:260–267. - PubMed
    1. Knaus WA, Wagner DP, Draper EA, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100:1619–1636. doi: 10.1378/chest.100.6.1619. - DOI - PubMed