Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;23(7):641-8.
doi: 10.1016/j.fm.2005.12.005. Epub 2006 Feb 23.

Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese

Affiliations

Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese

F Gardini et al. Food Microbiol. 2006 Oct.

Abstract

The aims of this work were to identify and characterize for some important technological properties the yeast species present throughout the ripening process of Pecorino Crotonese, a traditional cheese produced in a well defined area of Southern Italy. In particular, the strain technological properties considered include fermentation/assimilation of galactose and lactose, assimilation of lactate and citrate in the presence of different NaCl concentrations, hydrolysis of butter fat, skim milk, gelatine and casein, production of brown pigments in cheese agar and ability to produce biogenic amines. High yeast levels were recorded in cheese samples already after 5 h of brining (about 5 log cfu/g) and these concentration remained constant during ripening. The yeast isolates belonged to restrict number of yeast species. While Kluyveromyces lactis and Saccharomyces cerevisiae were isolated prevalently in the first stages of Pecorino Crotonese production, Yarrowia lipolytica and Debaryomyces hansenii dominated during the later stages of maturation. Otherwise, the latter two were very NaCl resistant species. In fact, D. hansenii strains conserved the ability to assimilate lactose and galactose in the presence of 10% NaCl, while almost all the strains of Y. lipolytica isolated assimilated citrate and lactate up to 7.5% NaCl. Y. lipolytica isolates evidenced also the highest proteolytic and lipolytic activities and the capability to catabolize tyrosine producing brown pigment. In addition they resulted in the highest aminobiogenic potential decarboxylating ornithine, phenylalanine, tyrosine and lysine. However, they were not able to produce histamine, biogenic amine produced by three strains of D. hansenii.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources