Preclinical pharmacokinetics: an approach towards safer and efficacious drugs
- PMID: 16472106
- DOI: 10.2174/138920006775541552
Preclinical pharmacokinetics: an approach towards safer and efficacious drugs
Abstract
Lack of efficacy and toxicity are considered to be major reasons for drug failures and pharmacokinetics governs them to a large extent. Compound with favorable pharmacokinetics is more likely to be efficacious and safe. Therefore, the preclinical pharmacokinetic evaluation should be comprehensive enough to ensure that compounds do not fail in the clinic. Preclinical ADME screening facilitates early elimination of weak candidates and directs the entire focus of the drug development program towards fewer potential lead candidates. Hence, it is mandatory that the pre-clinical candidates are subjected to as many possible reality checks. Reliance on in-vitro tests should be minimized because they do not represent the real physiological environment but rather slow down the pace of a drug discovery program. Compounds can be straight away subjected to in-vivo high throughput screens such as cassette dosing, cassette analysis or rapid rat screen etc. Candidates with the desired in-vivo pharmacokinetic profile may be further profiled in-vitro, using assays such as metabolic stability, reaction phenotyping, CYP-450 inhibition and induction, plasma protein binding etc. in human microsomes, human recombinant CYP-450 enzymes and human plasma. This also provides an early indication of whether the compound which worked in animals would work in human as well. In-vitro metabolic stability profile is a qualitative as well as quantitative comparison of metabolism of a compound in human and animal models. It helps in identifying the right model for toxicity studies. Extensive metabolism is generally considered a liability as it limits the systemic exposure and shortens the half-life of a compound. Several strategies such as reduction of lipophilicity, modification and / or blocking of metabolically soft spots and use of enzyme inhibitors; have been developed to combat metabolism. In spite of several concerns, the fact that active metabolites of several marketed drugs have been developed as drugs with better efficacy, safety and pharmacokinetics profile; cannot be denied. Therefore, instead of considering metabolic instability a liability it can be exploited as a tool for discovering better drugs. It is equally important to identify the metabolic pathways of the drug candidates by conducting in-vitro CYP450 reaction phenotyping assays. The identification of drug metabolizing enzymes involved in the major metabolic pathways of a compound helps in predicting the probable drug-drug interactions in human. Compounds with more than one metabolic pathway have less likelihood of clinically significant drug interactions. In-vitro CYP450 inhibition and induction screens are used to evaluate the potential of compound towards drug - drug interactions and the most prone candidates may either be discarded or taken ahead with a caution. It is known that only unbound drug is pharmacologically active and therefore the assessment of bound fraction by the estimation of plasma protein binding of a compound is another important parameter to be explored in-vitro. In addition to the process of 'weeding out' weak candidates early in the drug discovery process, it is equally important to identify the probable causes of poor ADME exhibited by some compounds as this information is useful to medicinal chemists for improving upon backbones that exhibit un favorable pharmacokinetic profile. Toxicity study is the foundation of an INDA (Investigational new drug application) and therefore, the final selection of a compound can be performed only after proper toxicological evaluation in animal models. Toxicokinetics forms an integral part of toxicity study and is used to assess the exposure of candidates in toxicity models and correlate the drug levels in blood and various tissues with the toxicological findings. Although in-vivo screening of compounds in animal models and in-vitro assays in human recombinant CYP-450 enzymes help in drug candidate selection, both approaches have their own limitations. There is no certainty that the selected candidates will exhibit the desired target PK profile in human and real human PK remains suspense until the compound enters Phase-1 clinical trial. The recognition of human micro dosing, (HMD) by medicines and healthcare products regulatory agency (MHRA) and European agency for evaluation of medicinal products [EMEA] is a stepping stone in the direction of obtaining human PK data early in the preclinical stage. This would gradually shift the focus of early drug development away from animal studies directly towards safe and ethical studies in human yielding more relevant and reliable pharmacokinetic data. HMD would provide an answer to the growing public demand for a reduction in the use of animals for pharmaceutical development.
Similar articles
-
Metabolic stability for drug discovery and development: pharmacokinetic and biochemical challenges.Clin Pharmacokinet. 2003;42(6):515-28. doi: 10.2165/00003088-200342060-00002. Clin Pharmacokinet. 2003. PMID: 12793837 Review.
-
Human hepatic cell cultures: in vitro and in vivo drug metabolism.Altern Lab Anim. 2003 May-Jun;31(3):257-65. doi: 10.1177/026119290303100307. Altern Lab Anim. 2003. PMID: 15612868
-
Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery.Curr Top Med Chem. 2001 Nov;1(5):403-25. doi: 10.2174/1568026013395001. Curr Top Med Chem. 2001. PMID: 11899105 Review.
-
Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution.Curr Drug Metab. 2010 Oct;11(8):678-85. doi: 10.2174/138920010794233503. Curr Drug Metab. 2010. PMID: 20973757 Review.
-
Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.Chem Res Toxicol. 2011 Sep 19;24(9):1420-56. doi: 10.1021/tx200211v. Epub 2011 Jul 26. Chem Res Toxicol. 2011. PMID: 21790149 Review.
Cited by
-
Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research.Am J Transl Res. 2016 Aug 15;8(8):3574-84. eCollection 2016. Am J Transl Res. 2016. PMID: 27648148 Free PMC article.
-
Propargyl 4-[F]fluorobenzoate: A Putatively More Stable Prosthetic group for the Fluorine-18 Labeling of Biomolecules via Click Chemistry.Curr Radiopharm. 2009 Jan 1;2(1):63-74. doi: 10.2174/1874471010902010063. Curr Radiopharm. 2009. PMID: 20414475 Free PMC article.
-
Bioactive Markers Based Pharmacokinetic Evaluation of Extracts of a Traditional Medicinal Plant, Piper sarmentosum.Evid Based Complement Alternat Med. 2011;2011:980760. doi: 10.1093/ecam/nep143. Epub 2011 Jun 23. Evid Based Complement Alternat Med. 2011. PMID: 19770264 Free PMC article.
-
A human embryonic stem cell reporter line for monitoring chemical-induced cardiotoxicity.Cardiovasc Res. 2020 Mar 1;116(3):658-670. doi: 10.1093/cvr/cvz148. Cardiovasc Res. 2020. PMID: 31173076 Free PMC article.
-
Artificial Intelligence/Machine Learning-Driven Small Molecule Repurposing via Off-Target Prediction and Transcriptomics.Toxics. 2023 Oct 22;11(10):875. doi: 10.3390/toxics11100875. Toxics. 2023. PMID: 37888725 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical