Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;93(1):104-15.

Development and evaluation of evidence-based nursing (EBN) filters and related databases

Affiliations

Development and evaluation of evidence-based nursing (EBN) filters and related databases

Mary A Lavin et al. J Med Libr Assoc. 2005 Jan.

Abstract

Objectives: Difficulties encountered in the retrieval of evidence-based nursing (EBN) literature and recognition of terminology, research focus, and design differences between evidence-based medicine and nursing led to the realization that nursing needs its own filter strategies for evidence-based practice. This article describes the development and evaluation of filters that facilitate evidence-based nursing searches.

Methods: An inductive, multistep methodology was employed. A sleep search strategy was developed for uniform application to all filters for filter development and evaluation purposes. An EBN matrix was next developed as a framework to illustrate conceptually the placement of nursing-sensitive filters along two axes: horizontally, an adapted nursing process, and vertically, levels of evidence. Nursing diagnosis, patient outcomes, and primary data filters were developed recursively. Through an interface with the PubMed search engine, the EBN matrix filters were inserted into a database that executes filter searches, retrieves citations, and stores and updates retrieved citations sets hourly. For evaluation purposes, the filters were subjected to sensitivity and specificity analyses and retrieval set comparisons. Once the evaluation was complete, hyperlinks providing access to any one or a combination of completed filters to the EBN matrix were created. Subject searches on any topic may be applied to the filters, which interface with PubMed.

Results: Sensitivity and specificity for the combined nursing diagnosis and primary data filter were 64% and 99%, respectively; for the patient outcomes filter, the results were 75% and 71%, respectively. Comparisons were made between the EBN matrix filters (nursing diagnosis and primary data) and PubMed's Clinical Queries (diagnosis and sensitivity) filters. Additional comparisons examined publication types and indexing differences. Review articles accounted for the majority of the publication type differences, because "review" was accepted by the CQ but was "NOT'd" by the EBN filter. Indexing comparisons revealed that although the term "nursing diagnosis" is in Medical Subject Headings (MeSH), the nursing diagnoses themselves (e.g., sleep deprivation, disturbed sleep pattern) are not indexed as nursing diagnoses. As a result, abstracts deemed to be appropriate nursing diagnosis by the EBN filter were not accepted by the CQ diagnosis filter.

Conclusions: The EBN filter capture of desired articles may be enhanced by further refinement to achieve a greater degree of filter sensitivity. Retrieval set comparisons revealed publication type differences and indexing issues. The EBN matrix filter "NOT'd" out "review," while the CQ filter did not. Indexing issues were identified that explained the retrieval of articles deemed appropriate by the EBN filter matrix but not included in the CQ retrieval. These results have MeSH definition and indexing implications as well as implications for clinical decision support in nursing practice.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Evidence-based nursing (EBN) matrix framework
Figure 2
Figure 2
EBN matrix filters
Figure 3
Figure 3
Number of citations retrieved from an advanced sleep search strategy* applied to the EBN matrix filters, which interfaces with the PubMed search engine Retrieved from http://nlinks.org/research_ebn_matrix.phtml on March 16, 2004). Cubby Name: focused sleep Last update: 20-Mar-2002 16:14:00 Database: PubMed Search: (((((“sleep”[MeSH Terms] OR sleep*[ti]) OR (“sleep disorders”[MeSH Terms] OR sleep disorders[Text Word])) AND (((((((“nursing”[Subheading] OR “nursing”[MeSH Terms]) OR nursing[Text Word]) OR (“nursing process”[MeSH Terms] OR nursing process[Text Word])) OR (((“nursing”[Subheading] OR “nursing”[MeSH Terms]) OR “nursing care”[MeSH Terms]) OR nursing care[Text Word])) OR (“nurse-patient relations”[MeSH Terms] OR nurse-patient relations[Text Word])) OR (“nurses”[MeSH Terms] OR nurses[Text Word])) OR (“nursing staff”[MeSH Terms] OR nursing staff[Text Word]))) AND English[Lang]) AND “human”[MeSH Terms]
Figure 4
Figure 4
Sample advanced sleep search using NLINKS EBN nursing diagnosis filter, limited to English language, abstracts only, and nursing journals subset

Similar articles

Cited by

References

    1. University of Toronto Libraries, Centre for Evidence-Based Medicine. Practising EBM. [Web document]. 2004. [cited 22 May 2004]. <http://www.cebm.utoronto.ca/practise/>.
    1. Jenicek M. Clinical case reporting in evidence-based medicine. New York, NY: Oxford University Press, 2001.
    1. McKibbon KA, Eady A, and Marks S. PDQ: evidence-based principles and practice. Hamilton, ON, Canada: B. C. Decker, 1999.
    1. National Library of Medicine. PubMed's Clinical Queries research methodology filters. [Web document]. [cited 22 May 2004]. <http://www.ncbi.nlm.nih.gov/entrez/query/static/clinicaltable.html>.
    1. Haynes RB, Wilczynski NL. (Hedges Team). Optimal search strategies for retrieving scientifically strong studies of diagnosis from Medline: analytical survey. [Web document]. BMJ 2004;328(7447). Available from: <http://bmj.bmjjournals.com/cgi/content/full/328/7447/1040>. [cited 11 May 2004]. - PMC - PubMed

Publication types

LinkOut - more resources