Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Winter;106(4):244-50.

Pseudoachondroplasia and multiple epiphyseal dysplasia: New etiologic developments

Affiliations
  • PMID: 11891674
Review

Pseudoachondroplasia and multiple epiphyseal dysplasia: New etiologic developments

S Unger et al. Am J Med Genet. 2001 Winter.

Abstract

Pseudoachondroplasia (PSACH) (OMIM#177170) and multiple epiphyseal dysplasia (MED) are separate but overlapping osteochondrodysplasias. PSACH is a dominantly inherited disorder characterized by short-limb short stature, loose joints, and early-onset osteoarthropathy. The diagnosis is based on characteristic clinical and radiographic findings. Only mutations in the cartilage oligomeric matrix protein (COMP) gene have been reported in PSACH, and all family studies have been consistent with linkage to the COMP locus on chromosome 19. Multiple epiphyseal dysplasia (MED) is a relatively mild chondrodysplasia but like PSACH, MED causes early-onset joint degeneration, particularly of the large weight-bearing joints. Given the clinical similarity between PSACH and MED, it was not surprising that the first MED locus identified was the COMP gene (EDM1). Mutations causing MED have now been identified in five other genes (COL9A1, COL9A2, COL9A3, DTDST, and MATN3), making MED one of the most genetically heterogeneous disorders. This article reviews the clinical features of PSACH and MED, the known mutations, and the pathogenetic effect of COMP mutations on the cartilage extracellular matrix.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources