Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2001 Nov 22;104(2):135-9.
doi: 10.1002/ajmg.10067.

Novel mutation in exon 18 of the cartilage oligomeric matrix protein gene causes a severe pseudoachondroplasia

Affiliations
Case Reports

Novel mutation in exon 18 of the cartilage oligomeric matrix protein gene causes a severe pseudoachondroplasia

A Mabuchi et al. Am J Med Genet. .

Abstract

Pseudoachondroplasia (PSACH) is a common skeletal dysplasia characterized by disproportionate short stature, early-onset osteoarthrosis, and dysplasia of the spine, epiphysis, and metaphysis. Multiple epiphyseal dysplasia (MED) is a similar but less severe disorder characterized by dysplasia of the epiphysis. Both disorders are caused by mutations in the cartilage oligomeric matrix protein (COMP) gene. COMP mutations cluster in a region of the gene that encodes calmodulin-like repeats (CLRs) and correlate closely with disease severity. Typically, mutations in exon 13 that composes the seventh CLR produce severe PSACH phenotypes, whereas mutations found elsewhere in the gene produce mild PSACH or MED phenotypes. We have identified a PSACH patient carrying a novel mutation in exon 18 of COMP that composes the C-terminal globular domain. This mutation produced a severe PSACH phenotype with marked short stature and deformities of the spine and extremities. Our results extend the range of disease-causing mutations within the COMP gene and demonstrate the importance of the additional domain of COMP protein in its in vivo function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources