Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct 12;9(17):2553-62.
doi: 10.1093/hmg/9.17.2553.

New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome

Affiliations

New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome

T C Cox et al. Hum Mol Genet. .

Abstract

Opitz syndrome (OS) is a genetically heterogeneous malformation disorder. Patients with OS may present with a variable array of malformations that are indicative of a disturbance of the primary midline developmental field. Mutations in the C-terminal half of MID1, an RBCC (RING, B-box and coiled-coil) protein, have recently been shown to underlie the X-linked form of OS. Here we show that the MID1 gene spans at least 400 kb, almost twice the distance originally reported and has a minimum of six mRNA isoforms as a result of the alternative use of 5' untranslated exons. In addition, our detailed mutational analysis of MID1 in a cohort of 15 patients with OS has resulted in the identification of seven novel mutations, two of which disrupt the N-terminus of the protein. The most severe of these (E115X) is predicted to truncate the protein before the B-box motifs. In a separate patient, a missense change (L626P) was found that also represents the most C-terminal alteration reported to date. As noted with other C-terminal mutations, GFP fusion constructs demonstrated that the L626P mutant formed cytoplasmic clumps in contrast to the microtubular distribution seen with the wild-type sequence. Notably, however, both N-terminal mutants showed no evidence of cytoplasmic aggregation, inferring that this feature is not pathognomonic for X-linked OS. These new data and the finding of linkage to MID1 in the absence of a demonstrable open reading frame mutation in a further family support the conclusion that X-linked OS results from loss of function of MID1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms