
Single brain cells in a macaque’s visual cortex relay unique signals about each object in a set of two along a single neuron, but only if they’re spaced apart. Image credit: Jared Lazarus/Duke Photo
“How many fingers am I holding up?”
For vision-sensing brain cells in a monkey’s visual cortex, that answer depends on whether the digits are next to each other or partially overlapping.
A new study from Duke University finds that single neurons conveying visual information about two separate objects in sight do so by alternating signals about one or the other. When two objects overlap, however, the brain cells detect them as a single entity.
The new report is out Nov. 28 in the journal eLife.
The findings help expand what is known about how the brain makes sense of its complicated and busy world. Most research on sensory processing, be it sounds or sights, sets the bar too low by testing how brain cells react to a single tone or image.
“There are lots of reasons to keep things simple in the lab,” said Jennifer Groh, Ph.D., a faculty member of the Duke Institute for Brain Sciences and senior author of the new report. “But it means that we're not very far along in understanding how the brain encodes more than one thing at a time.”