dbSNP Short Genetic Variations
Welcome to the Reference SNP (rs) Report
All alleles are reported in the Forward orientation. Click on the Variant Details tab for details on Genomic Placement, Gene, and Amino Acid changes. HGVS names are in the HGVS tab.
Reference SNP (rs) Report
This page reports data for a single dbSNP Reference SNP variation (RefSNP or rs) from the new redesigned dbSNP build.
Top of the page reports a concise summary for the rs, with more specific details included in the corresponding tabs below.
All alleles are reported in the Forward orientation. Use the Genomic View to inspect the nucleotides flanking the variant, and its neighbors.
For more information see Help documentation.
rs887829
Current Build 157
Released September 3, 2024
- Organism
- Homo sapiens
- Position
-
chr2:233759924 (GRCh38.p14) Help
The anchor position for this RefSNP. Includes all nucleotides potentially affected by this change, thus it can differ from HGVS, which is right-shifted. See here for details.
- Alleles
- C>A / C>G / C>T
- Variation Type
- SNV Single Nucleotide Variation
- Frequency
-
T=0.327903 (115401/351936, ALFA)T=0.355563 (94114/264690, TOPMED)T=0.361387 (53812/148904, GnomAD_genomes) (+ 21 more)
- Clinical Significance
- Not Reported in ClinVar
- Gene : Consequence
-
UGT1A10 : Intron VariantUGT1A3 : Intron VariantUGT1A4 : Intron Variant (+ 6 more)
- Publications
- 69 citations
- Genomic View
- See rs on genome
ALFA Allele Frequency
The ALFA project provide aggregate allele frequency from dbGaP. More information is available on the project page including descriptions, data access, and terms of use.
Population | Group | Sample Size | Ref Allele | Alt Allele | Ref HMOZ | Alt HMOZ | HTRZ | HWEP |
---|---|---|---|---|---|---|---|---|
Total | Global | 351936 | C=0.672097 | T=0.327903 | 0.453975 | 0.109781 | 0.436244 | 10 |
European | Sub | 300524 | C=0.671537 | T=0.328463 | 0.451139 | 0.108065 | 0.440797 | 0 |
African | Sub | 11758 | C=0.54822 | T=0.45178 | 0.300902 | 0.204457 | 0.494642 | 0 |
African Others | Sub | 414 | C=0.498 | T=0.502 | 0.241546 | 0.246377 | 0.512077 | 0 |
African American | Sub | 11344 | C=0.55007 | T=0.44993 | 0.303068 | 0.202927 | 0.494006 | 0 |
Asian | Sub | 6970 | C=0.8861 | T=0.1139 | 0.785653 | 0.013486 | 0.200861 | 0 |
East Asian | Sub | 5000 | C=0.8800 | T=0.1200 | 0.774 | 0.014 | 0.212 | 0 |
Other Asian | Sub | 1970 | C=0.9015 | T=0.0985 | 0.815228 | 0.012183 | 0.172589 | 0 |
Latin American 1 | Sub | 1278 | C=0.6847 | T=0.3153 | 0.475743 | 0.106416 | 0.41784 | 0 |
Latin American 2 | Sub | 9380 | C=0.6832 | T=0.3168 | 0.46951 | 0.103198 | 0.427292 | 0 |
South Asian | Sub | 5236 | C=0.5905 | T=0.4095 | 0.354469 | 0.173415 | 0.472116 | 1 |
Other | Sub | 16790 | C=0.69833 | T=0.30167 | 0.494937 | 0.098273 | 0.40679 | 6 |
Frequency tab displays a table of the reference and alternate allele frequencies reported by various studies and populations. Table lines, where Population="Global" refer to the entire study population, whereas lines, where Group="Sub", refer to a study-specific population subgroupings (i.e. AFR, CAU, etc.), if available. Frequency for the alternate allele (Alt Allele) is a ratio of samples observed-to-total, where the numerator (observed samples) is the number of chromosomes in the study with the minor allele present (found in "Sample size", where Group="Sub"), and the denominator (total samples) is the total number of all chromosomes in the study for the variant (found in "Sample size", where Group="Study-wide" and Population="Global").
DownloadStudy | Population | Group | Sample Size | Ref Allele | Alt Allele |
---|---|---|---|---|---|
Allele Frequency Aggregator | Total | Global | 351936 | C=0.672097 | T=0.327903 |
Allele Frequency Aggregator | European | Sub | 300524 | C=0.671537 | T=0.328463 |
Allele Frequency Aggregator | Other | Sub | 16790 | C=0.69833 | T=0.30167 |
Allele Frequency Aggregator | African | Sub | 11758 | C=0.54822 | T=0.45178 |
Allele Frequency Aggregator | Latin American 2 | Sub | 9380 | C=0.6832 | T=0.3168 |
Allele Frequency Aggregator | Asian | Sub | 6970 | C=0.8861 | T=0.1139 |
Allele Frequency Aggregator | South Asian | Sub | 5236 | C=0.5905 | T=0.4095 |
Allele Frequency Aggregator | Latin American 1 | Sub | 1278 | C=0.6847 | T=0.3153 |
TopMed | Global | Study-wide | 264690 | C=0.644437 | T=0.355563 |
gnomAD v4 - Genomes | Global | Study-wide | 148904 | C=0.638613 | T=0.361387 |
gnomAD v4 - Genomes | European | Sub | 78494 | C=0.66566 | T=0.33434 |
gnomAD v4 - Genomes | African | Sub | 41388 | C=0.55125 | T=0.44875 |
gnomAD v4 - Genomes | American | Sub | 15274 | C=0.67605 | T=0.32395 |
gnomAD v4 - Genomes | East Asian | Sub | 5170 | C=0.8741 | T=0.1259 |
gnomAD v4 - Genomes | South Asian | Sub | 4818 | C=0.5905 | T=0.4095 |
gnomAD v4 - Genomes | Ashkenazi Jewish | Sub | 3466 | C=0.6174 | T=0.3826 |
gnomAD v4 - Genomes | Middle Eastern | sub | 294 | C=0.670 | T=0.330 |
The PAGE Study | Global | Study-wide | 78694 | C=0.64470 | T=0.35530 |
The PAGE Study | AfricanAmerican | Sub | 32512 | C=0.56287 | T=0.43713 |
The PAGE Study | Mexican | Sub | 10810 | C=0.68353 | T=0.31647 |
The PAGE Study | Asian | Sub | 8318 | C=0.8836 | T=0.1164 |
The PAGE Study | PuertoRican | Sub | 7916 | C=0.6454 | T=0.3546 |
The PAGE Study | NativeHawaiian | Sub | 4532 | C=0.7094 | T=0.2906 |
The PAGE Study | Cuban | Sub | 4230 | C=0.6693 | T=0.3307 |
The PAGE Study | Dominican | Sub | 3828 | C=0.6102 | T=0.3898 |
The PAGE Study | CentralAmerican | Sub | 2450 | C=0.6686 | T=0.3314 |
The PAGE Study | SouthAmerican | Sub | 1982 | C=0.6327 | T=0.3673 |
The PAGE Study | NativeAmerican | Sub | 1260 | C=0.6532 | T=0.3468 |
The PAGE Study | SouthAsian | Sub | 856 | C=0.571 | T=0.429 |
38KJPN | JAPANESE | Study-wide | 77442 | C=0.88703 | T=0.11297 |
Korean Genome Project 4K | KOREAN | Study-wide | 7234 | C=0.8757 | T=0.1243 |
1000Genomes_30X | Global | Study-wide | 6404 | C=0.6421 | T=0.3579 |
1000Genomes_30X | African | Sub | 1786 | C=0.5101 | T=0.4899 |
1000Genomes_30X | Europe | Sub | 1266 | C=0.6991 | T=0.3009 |
1000Genomes_30X | South Asian | Sub | 1202 | C=0.5641 | T=0.4359 |
1000Genomes_30X | East Asian | Sub | 1170 | C=0.8718 | T=0.1282 |
1000Genomes_30X | American | Sub | 980 | C=0.631 | T=0.369 |
1000Genomes | Global | Study-wide | 5008 | C=0.6460 | T=0.3540 |
1000Genomes | African | Sub | 1322 | C=0.5068 | T=0.4932 |
1000Genomes | East Asian | Sub | 1008 | C=0.8700 | T=0.1300 |
1000Genomes | Europe | Sub | 1006 | C=0.7018 | T=0.2982 |
1000Genomes | South Asian | Sub | 978 | C=0.563 | T=0.437 |
1000Genomes | American | Sub | 694 | C=0.621 | T=0.379 |
Genetic variation in the Estonian population | Estonian | Study-wide | 4480 | C=0.6549 | T=0.3451 |
The Avon Longitudinal Study of Parents and Children | PARENT AND CHILD COHORT | Study-wide | 3854 | C=0.6785 | T=0.3215 |
UK 10K study - Twins | TWIN COHORT | Study-wide | 3708 | C=0.6872 | T=0.3128 |
KOREAN population from KRGDB | KOREAN | Study-wide | 2930 | C=0.8683 | T=0.1317 |
HapMap | Global | Study-wide | 1890 | C=0.6365 | T=0.3635 |
HapMap | American | Sub | 768 | C=0.680 | T=0.320 |
HapMap | African | Sub | 692 | C=0.490 | T=0.510 |
HapMap | Asian | Sub | 254 | C=0.835 | T=0.165 |
HapMap | Europe | Sub | 176 | C=0.739 | T=0.261 |
Korean Genome Project | KOREAN | Study-wide | 1832 | C=0.8701 | T=0.1299 |
CNV burdens in cranial meningiomas | Global | Study-wide | 788 | C=0.879 | T=0.121 |
CNV burdens in cranial meningiomas | CRM | Sub | 788 | C=0.879 | T=0.121 |
Chileans | Chilean | Study-wide | 626 | C=0.677 | T=0.323 |
Northern Sweden | ACPOP | Study-wide | 600 | C=0.678 | T=0.322 |
SGDP_PRJ | Global | Study-wide | 252 | C=0.377 | T=0.623 |
Qatari | Global | Study-wide | 216 | C=0.681 | T=0.319 |
A Vietnamese Genetic Variation Database | Global | Study-wide | 216 | C=0.912 | T=0.088 |
PharmGKB Aggregated | Global | Study-wide | 144 | C=0.708 | T=0.292 |
PharmGKB Aggregated | PA130445541 | Sub | 144 | C=0.708 | T=0.292 |
The Danish reference pan genome | Danish | Study-wide | 40 | C=0.68 | T=0.33 |
Ancient Sardinia genome-wide 1240k capture data generation and analysis | Global | Study-wide | 34 | C=0.71 | T=0.29 |
Siberian | Global | Study-wide | 28 | C=0.43 | T=0.57 |
Variant Details tab shows known variant placements on genomic sequences: chromosomes (NC_), RefSeqGene, pseudogenes or genomic regions (NG_), and in a separate table: on transcripts (NM_) and protein sequences (NP_). The corresponding transcript and protein locations are listed in adjacent lines, along with molecular consequences from Sequence Ontology. When no protein placement is available, only the transcript is listed. Column "Codon[Amino acid]" shows the actual base change in the format of "Reference > Alternate" allele, including the nucleotide codon change in transcripts, and the amino acid change in proteins, respectively, allowing for known ribosomal slippage sites. To view nucleotides adjacent to the variant use the Genomic View at the bottom of the page - zoom into the sequence until the nucleotides around the variant become visible.
Sequence name | Change |
---|---|
GRCh38.p14 chr 2 | NC_000002.12:g.233759924C>A |
GRCh38.p14 chr 2 | NC_000002.12:g.233759924C>G |
GRCh38.p14 chr 2 | NC_000002.12:g.233759924C>T |
GRCh37.p13 chr 2 | NC_000002.11:g.234668570C>A |
GRCh37.p13 chr 2 | NC_000002.11:g.234668570C>G |
GRCh37.p13 chr 2 | NC_000002.11:g.234668570C>T |
UGT1A RefSeqGene | NG_002601.2:g.175181C>A |
UGT1A RefSeqGene | NG_002601.2:g.175181C>G |
UGT1A RefSeqGene | NG_002601.2:g.175181C>T |
UGT1A1 RefSeqGene (LRG_733) | NG_033238.1:g.4652C>A |
UGT1A1 RefSeqGene (LRG_733) | NG_033238.1:g.4652C>G |
UGT1A1 RefSeqGene (LRG_733) | NG_033238.1:g.4652C>T |
LOC129660919 genomic region | NG_157956.1:g.318C>A |
LOC129660919 genomic region | NG_157956.1:g.318C>G |
LOC129660919 genomic region | NG_157956.1:g.318C>T |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A6 transcript variant 1 | NM_001072.4:c.862-7110C>A | N/A | Intron Variant |
UGT1A6 transcript variant 2 | NM_205862.3:c.61-7110C>A | N/A | Intron Variant |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A4 transcript | NM_007120.3:c.868-7110C>A | N/A | Intron Variant |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A10 transcript | NM_019075.4:c.856-7110C>A | N/A | Intron Variant |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A8 transcript | NM_019076.5:c.856-7110C>A | N/A | Intron Variant |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A7 transcript | NM_019077.3:c.856-7110C>A | N/A | Intron Variant |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A5 transcript | NM_019078.2:c.868-7110C>A | N/A | Intron Variant |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A3 transcript | NM_019093.4:c.868-7110C>A | N/A | Intron Variant |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A9 transcript | NM_021027.3:c.856-7110C>A | N/A | Intron Variant |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
UGT1A1 transcript | NM_000463.3:c. | N/A | Upstream Transcript Variant |
Clinical Significance tab shows a list of clinical significance entries from ClinVar associated with the variation, per allele. Click on the RCV accession (i.e. RCV000001615.2) or Allele ID (i.e. 12274) to access full ClinVar report.
Aliases tab displays HGVS names representing the variant placements and allele changes on genomic, transcript and protein sequences, per allele. HGVS name is an expression for reporting sequence accession and version, sequence type, position, and allele change. The column "Note" can have two values: "diff" means that there is a difference between the reference allele (variation interval) at the placement reported in HGVS name and the reference alleles reported in other HGVS names, and "rev" means that the sequence of this variation interval at the placement reported in HGVS name is in reverse orientation to the sequence(s) of this variation in other HGVS names not labeled as "rev".
Placement | C= | A | G | T |
---|---|---|---|---|
GRCh38.p14 chr 2 | NC_000002.12:g.233759924= | NC_000002.12:g.233759924C>A | NC_000002.12:g.233759924C>G | NC_000002.12:g.233759924C>T |
GRCh37.p13 chr 2 | NC_000002.11:g.234668570= | NC_000002.11:g.234668570C>A | NC_000002.11:g.234668570C>G | NC_000002.11:g.234668570C>T |
UGT1A RefSeqGene | NG_002601.2:g.175181= | NG_002601.2:g.175181C>A | NG_002601.2:g.175181C>G | NG_002601.2:g.175181C>T |
UGT1A1 RefSeqGene (LRG_733) | NG_033238.1:g.4652= | NG_033238.1:g.4652C>A | NG_033238.1:g.4652C>G | NG_033238.1:g.4652C>T |
LOC129660919 genomic region | NG_157956.1:g.318= | NG_157956.1:g.318C>A | NG_157956.1:g.318C>G | NG_157956.1:g.318C>T |
UGT1A6 transcript variant 1 | NM_001072.3:c.862-7110= | NM_001072.3:c.862-7110C>A | NM_001072.3:c.862-7110C>G | NM_001072.3:c.862-7110C>T |
UGT1A6 transcript variant 1 | NM_001072.4:c.862-7110= | NM_001072.4:c.862-7110C>A | NM_001072.4:c.862-7110C>G | NM_001072.4:c.862-7110C>T |
UGT1A4 transcript | NM_007120.2:c.868-7110= | NM_007120.2:c.868-7110C>A | NM_007120.2:c.868-7110C>G | NM_007120.2:c.868-7110C>T |
UGT1A4 transcript | NM_007120.3:c.868-7110= | NM_007120.3:c.868-7110C>A | NM_007120.3:c.868-7110C>G | NM_007120.3:c.868-7110C>T |
UGT1A10 transcript | NM_019075.2:c.856-7110= | NM_019075.2:c.856-7110C>A | NM_019075.2:c.856-7110C>G | NM_019075.2:c.856-7110C>T |
UGT1A10 transcript | NM_019075.4:c.856-7110= | NM_019075.4:c.856-7110C>A | NM_019075.4:c.856-7110C>G | NM_019075.4:c.856-7110C>T |
UGT1A8 transcript | NM_019076.4:c.856-7110= | NM_019076.4:c.856-7110C>A | NM_019076.4:c.856-7110C>G | NM_019076.4:c.856-7110C>T |
UGT1A8 transcript | NM_019076.5:c.856-7110= | NM_019076.5:c.856-7110C>A | NM_019076.5:c.856-7110C>G | NM_019076.5:c.856-7110C>T |
UGT1A7 transcript | NM_019077.2:c.856-7110= | NM_019077.2:c.856-7110C>A | NM_019077.2:c.856-7110C>G | NM_019077.2:c.856-7110C>T |
UGT1A7 transcript | NM_019077.3:c.856-7110= | NM_019077.3:c.856-7110C>A | NM_019077.3:c.856-7110C>G | NM_019077.3:c.856-7110C>T |
UGT1A5 transcript | NM_019078.1:c.868-7110= | NM_019078.1:c.868-7110C>A | NM_019078.1:c.868-7110C>G | NM_019078.1:c.868-7110C>T |
UGT1A5 transcript | NM_019078.2:c.868-7110= | NM_019078.2:c.868-7110C>A | NM_019078.2:c.868-7110C>G | NM_019078.2:c.868-7110C>T |
UGT1A3 transcript | NM_019093.2:c.868-7110= | NM_019093.2:c.868-7110C>A | NM_019093.2:c.868-7110C>G | NM_019093.2:c.868-7110C>T |
UGT1A3 transcript | NM_019093.4:c.868-7110= | NM_019093.4:c.868-7110C>A | NM_019093.4:c.868-7110C>G | NM_019093.4:c.868-7110C>T |
UGT1A9 transcript | NM_021027.2:c.856-7110= | NM_021027.2:c.856-7110C>A | NM_021027.2:c.856-7110C>G | NM_021027.2:c.856-7110C>T |
UGT1A9 transcript | NM_021027.3:c.856-7110= | NM_021027.3:c.856-7110C>A | NM_021027.3:c.856-7110C>G | NM_021027.3:c.856-7110C>T |
UGT1A6 transcript variant 2 | NM_205862.1:c.61-7110= | NM_205862.1:c.61-7110C>A | NM_205862.1:c.61-7110C>G | NM_205862.1:c.61-7110C>T |
UGT1A6 transcript variant 2 | NM_205862.3:c.61-7110= | NM_205862.3:c.61-7110C>A | NM_205862.3:c.61-7110C>G | NM_205862.3:c.61-7110C>T |
Submissions tab displays variations originally submitted to dbSNP, now supporting this RefSNP cluster (rs). We display Submitter handle, Submission identifier, Date and Build number, when the submission appeared for the first time. Direct submissions to dbSNP have Submission ID in the form of an ss-prefixed number (ss#). Other supporting variations are listed in the table without ss#.
No | Submitter | Submission ID | Date (Build) |
---|---|---|---|
1 | TSC-CSHL | ss1315995 | Oct 05, 2000 (86) |
2 | TSC-CSHL | ss5169686 | Oct 08, 2002 (108) |
3 | WUGSC_SSAHASNP | ss14494210 | Dec 05, 2003 (119) |
4 | CSHL-HAPMAP | ss17659924 | Feb 27, 2004 (120) |
5 | SSAHASNP | ss21574509 | Apr 05, 2004 (123) |
6 | ABI | ss44259633 | Mar 13, 2006 (126) |
7 | EGP_SNPS | ss50393212 | Mar 14, 2006 (126) |
8 | STEJUSTINE-REGGEN | ss51854787 | Mar 16, 2006 (126) |
9 | AFFY | ss66331626 | Nov 30, 2006 (127) |
10 | PHARMGKB_PAAR-UCHI | ss69369239 | May 17, 2007 (127) |
11 | ILLUMINA | ss75086159 | Dec 06, 2007 (129) |
12 | AFFY | ss76028792 | Dec 06, 2007 (129) |
13 | HGSV | ss78444692 | Dec 06, 2007 (129) |
14 | KRIBB_YJKIM | ss81442937 | Dec 16, 2007 (130) |
15 | HUMANGENOME_JCVI | ss97132036 | Feb 04, 2009 (130) |
16 | 1000GENOMES | ss110965202 | Jan 25, 2009 (130) |
17 | 1000GENOMES | ss111825012 | Jan 25, 2009 (130) |
18 | ILLUMINA-UK | ss118123012 | Feb 14, 2009 (130) |
19 | ENSEMBL | ss132931186 | Dec 01, 2009 (131) |
20 | ILLUMINA | ss154477894 | Dec 01, 2009 (131) |
21 | ILLUMINA | ss159652323 | Dec 01, 2009 (131) |
22 | ILLUMINA | ss160963094 | Dec 01, 2009 (131) |
23 | AFFY | ss170602199 | Jul 04, 2010 (132) |
24 | ILLUMINA | ss174767711 | Jul 04, 2010 (132) |
25 | BUSHMAN | ss201895631 | Jul 04, 2010 (132) |
26 | BCM-HGSC-SUB | ss205632455 | Jul 04, 2010 (132) |
27 | 1000GENOMES | ss219881097 | Jul 14, 2010 (132) |
28 | 1000GENOMES | ss231635572 | Jul 14, 2010 (132) |
29 | 1000GENOMES | ss239083133 | Jul 15, 2010 (132) |
30 | GMI | ss276944164 | May 04, 2012 (137) |
31 | PJP | ss292510946 | May 09, 2011 (134) |
32 | ILLUMINA | ss410955790 | Sep 17, 2011 (135) |
33 | ILLUMINA | ss481826310 | May 04, 2012 (137) |
34 | ILLUMINA | ss481858816 | May 04, 2012 (137) |
35 | ILLUMINA | ss482818061 | Sep 08, 2015 (146) |
36 | ILLUMINA | ss485707682 | May 04, 2012 (137) |
37 | EXOME_CHIP | ss491333410 | May 04, 2012 (137) |
38 | ILLUMINA | ss537571115 | Sep 08, 2015 (146) |
39 | SSMP | ss649966236 | Apr 25, 2013 (138) |
40 | ILLUMINA | ss779002278 | Sep 08, 2015 (146) |
41 | ILLUMINA | ss780687159 | Sep 08, 2015 (146) |
42 | ILLUMINA | ss783299449 | Sep 08, 2015 (146) |
43 | ILLUMINA | ss783360702 | Sep 08, 2015 (146) |
44 | ILLUMINA | ss784251789 | Sep 08, 2015 (146) |
45 | ILLUMINA | ss832560786 | Sep 08, 2015 (146) |
46 | ILLUMINA | ss833163131 | Jul 13, 2019 (153) |
47 | ILLUMINA | ss834464654 | Sep 08, 2015 (146) |
48 | EVA-GONL | ss978088575 | Aug 21, 2014 (142) |
49 | JMKIDD_LAB | ss1070036231 | Aug 21, 2014 (142) |
50 | 1000GENOMES | ss1302134496 | Aug 21, 2014 (142) |
51 | DDI | ss1428950089 | Apr 01, 2015 (144) |
52 | EVA_GENOME_DK | ss1579373554 | Apr 01, 2015 (144) |
53 | EVA_DECODE | ss1587548679 | Apr 01, 2015 (144) |
54 | EVA_UK10K_ALSPAC | ss1606057639 | Apr 01, 2015 (144) |
55 | EVA_UK10K_TWINSUK | ss1649051672 | Apr 01, 2015 (144) |
56 | EVA_SVP | ss1712539934 | Apr 01, 2015 (144) |
57 | ILLUMINA | ss1752345218 | Sep 08, 2015 (146) |
58 | ILLUMINA | ss1752345219 | Sep 08, 2015 (146) |
59 | HAMMER_LAB | ss1798566758 | Sep 08, 2015 (146) |
60 | ILLUMINA | ss1917761544 | Feb 12, 2016 (147) |
61 | WEILL_CORNELL_DGM | ss1921336161 | Feb 12, 2016 (147) |
62 | ILLUMINA | ss1946070030 | Feb 12, 2016 (147) |
63 | ILLUMINA | ss1958518576 | Feb 12, 2016 (147) |
64 | JJLAB | ss2021216395 | Sep 14, 2016 (149) |
65 | ILLUMINA | ss2094809166 | Dec 20, 2016 (150) |
66 | ILLUMINA | ss2095111600 | Dec 20, 2016 (150) |
67 | USC_VALOUEV | ss2149282513 | Dec 20, 2016 (150) |
68 | HUMAN_LONGEVITY | ss2240160658 | Dec 20, 2016 (150) |
69 | SYSTEMSBIOZJU | ss2625108462 | Nov 08, 2017 (151) |
70 | ILLUMINA | ss2633755412 | Nov 08, 2017 (151) |
71 | ILLUMINA | ss2633755413 | Nov 08, 2017 (151) |
72 | GRF | ss2703935215 | Nov 08, 2017 (151) |
73 | ILLUMINA | ss2710928943 | Nov 08, 2017 (151) |
74 | ILLUMINA | ss2710928944 | Nov 08, 2017 (151) |
75 | GNOMAD | ss2787712026 | Nov 08, 2017 (151) |
76 | AFFY | ss2985203948 | Nov 08, 2017 (151) |
77 | AFFY | ss2985825270 | Nov 08, 2017 (151) |
78 | SWEGEN | ss2991558423 | Nov 08, 2017 (151) |
79 | ILLUMINA | ss3022083116 | Nov 08, 2017 (151) |
80 | BIOINF_KMB_FNS_UNIBA | ss3024368349 | Nov 08, 2017 (151) |
81 | CSHL | ss3344798535 | Nov 08, 2017 (151) |
82 | ILLUMINA | ss3628314198 | Oct 11, 2018 (152) |
83 | ILLUMINA | ss3628314199 | Oct 11, 2018 (152) |
84 | ILLUMINA | ss3631714589 | Oct 11, 2018 (152) |
85 | ILLUMINA | ss3633951936 | Oct 11, 2018 (152) |
86 | ILLUMINA | ss3634818215 | Oct 11, 2018 (152) |
87 | ILLUMINA | ss3634818216 | Oct 11, 2018 (152) |
88 | ILLUMINA | ss3635637289 | Oct 11, 2018 (152) |
89 | ILLUMINA | ss3636508286 | Oct 11, 2018 (152) |
90 | ILLUMINA | ss3637389324 | Oct 11, 2018 (152) |
91 | ILLUMINA | ss3638325646 | Oct 11, 2018 (152) |
92 | ILLUMINA | ss3640525514 | Oct 11, 2018 (152) |
93 | ILLUMINA | ss3640525515 | Oct 11, 2018 (152) |
94 | ILLUMINA | ss3641122392 | Oct 11, 2018 (152) |
95 | ILLUMINA | ss3641418537 | Oct 11, 2018 (152) |
96 | ILLUMINA | ss3643289839 | Oct 11, 2018 (152) |
97 | ILLUMINA | ss3644772734 | Oct 11, 2018 (152) |
98 | URBANLAB | ss3647302824 | Oct 11, 2018 (152) |
99 | ILLUMINA | ss3652535920 | Oct 11, 2018 (152) |
100 | ILLUMINA | ss3652535921 | Oct 11, 2018 (152) |
101 | ILLUMINA | ss3653971967 | Oct 11, 2018 (152) |
102 | EGCUT_WGS | ss3659455948 | Jul 13, 2019 (153) |
103 | EVA_DECODE | ss3706266231 | Jul 13, 2019 (153) |
104 | ILLUMINA | ss3725884821 | Jul 13, 2019 (153) |
105 | ACPOP | ss3729481016 | Jul 13, 2019 (153) |
106 | ILLUMINA | ss3744488886 | Jul 13, 2019 (153) |
107 | ILLUMINA | ss3745118104 | Jul 13, 2019 (153) |
108 | ILLUMINA | ss3745118105 | Jul 13, 2019 (153) |
109 | EVA | ss3758234696 | Jul 13, 2019 (153) |
110 | PAGE_CC | ss3770996297 | Jul 13, 2019 (153) |
111 | ILLUMINA | ss3772614479 | Jul 13, 2019 (153) |
112 | ILLUMINA | ss3772614480 | Jul 13, 2019 (153) |
113 | KHV_HUMAN_GENOMES | ss3802597182 | Jul 13, 2019 (153) |
114 | EVA | ss3827569841 | Apr 25, 2020 (154) |
115 | EVA | ss3837205320 | Apr 25, 2020 (154) |
116 | EVA | ss3842627995 | Apr 25, 2020 (154) |
117 | SGDP_PRJ | ss3854854074 | Apr 25, 2020 (154) |
118 | KRGDB | ss3900603208 | Apr 25, 2020 (154) |
119 | KOGIC | ss3950335494 | Apr 25, 2020 (154) |
120 | EVA | ss3984499944 | Apr 26, 2021 (155) |
121 | EVA | ss3984961493 | Apr 26, 2021 (155) |
122 | EVA | ss4017055751 | Apr 26, 2021 (155) |
123 | TOPMED | ss4548833302 | Apr 26, 2021 (155) |
124 | TOMMO_GENOMICS | ss6019041114 | Oct 30, 2024 (157) |
125 | EVA | ss6289038307 | Oct 30, 2024 (157) |
126 | EVA | ss6321885007 | Oct 30, 2024 (157) |
127 | EVA | ss6322167472 | Oct 30, 2024 (157) |
128 | EVA | ss6323673394 | Oct 30, 2024 (157) |
129 | EVA | ss6329932039 | Oct 30, 2024 (157) |
130 | YEGNASUBRAMANIAN_LAB | ss6336182597 | Oct 30, 2024 (157) |
131 | EVA | ss6349546496 | Oct 30, 2024 (157) |
132 | EVA | ss6349997699 | Oct 30, 2024 (157) |
133 | KOGIC | ss6358689863 | Oct 30, 2024 (157) |
134 | GNOMAD | ss6574549840 | Oct 30, 2024 (157) |
135 | TOMMO_GENOMICS | ss8157056096 | Oct 30, 2024 (157) |
136 | 1000G_HIGH_COVERAGE | ss8252463046 | Oct 30, 2024 (157) |
137 | EVA | ss8314817565 | Oct 30, 2024 (157) |
138 | HUGCELL_USP | ss8452030957 | Oct 30, 2024 (157) |
139 | EVA | ss8506837146 | Oct 30, 2024 (157) |
140 | 1000G_HIGH_COVERAGE | ss8530019275 | Oct 30, 2024 (157) |
141 | SANFORD_IMAGENETICS | ss8624475465 | Oct 30, 2024 (157) |
142 | SANFORD_IMAGENETICS | ss8631198234 | Oct 30, 2024 (157) |
143 | TOMMO_GENOMICS | ss8688107864 | Oct 30, 2024 (157) |
144 | EVA | ss8799401927 | Oct 30, 2024 (157) |
145 | EVA | ss8799563827 | Oct 30, 2024 (157) |
146 | YY_MCH | ss8803328105 | Oct 30, 2024 (157) |
147 | EVA | ss8821760177 | Oct 30, 2024 (157) |
148 | EVA | ss8847207755 | Oct 30, 2024 (157) |
149 | EVA | ss8847907898 | Oct 30, 2024 (157) |
150 | EVA | ss8853001639 | Oct 30, 2024 (157) |
151 | EVA | ss8935201195 | Oct 30, 2024 (157) |
152 | EVA | ss8957463878 | Oct 30, 2024 (157) |
153 | EVA | ss8979604197 | Oct 30, 2024 (157) |
154 | EVA | ss8981875239 | Oct 30, 2024 (157) |
155 | EVA | ss8981875240 | Oct 30, 2024 (157) |
156 | EVA | ss8982417359 | Oct 30, 2024 (157) |
157 | 1000Genomes | NC_000002.11 - 234668570 | Oct 11, 2018 (152) |
158 | 1000Genomes_30X | NC_000002.12 - 233759924 | Oct 30, 2024 (157) |
159 | The Avon Longitudinal Study of Parents and Children | NC_000002.11 - 234668570 | Oct 11, 2018 (152) |
160 | Chileans | NC_000002.11 - 234668570 | Apr 25, 2020 (154) |
161 | Genetic variation in the Estonian population | NC_000002.11 - 234668570 | Oct 11, 2018 (152) |
162 | The Danish reference pan genome | NC_000002.11 - 234668570 | Apr 25, 2020 (154) |
163 | gnomAD v4 - Genomes | NC_000002.12 - 233759924 | Oct 30, 2024 (157) |
164 | HapMap | NC_000002.12 - 233759924 | Apr 25, 2020 (154) |
165 | KOREAN population from KRGDB | NC_000002.11 - 234668570 | Apr 25, 2020 (154) |
166 | Korean Genome Project | NC_000002.12 - 233759924 | Apr 25, 2020 (154) |
167 | Korean Genome Project 4K | NC_000002.12 - 233759924 | Oct 30, 2024 (157) |
168 | Northern Sweden | NC_000002.11 - 234668570 | Jul 13, 2019 (153) |
169 | The PAGE Study | NC_000002.12 - 233759924 | Jul 13, 2019 (153) |
170 | Ancient Sardinia genome-wide 1240k capture data generation and analysis | NC_000002.11 - 234668570 | Apr 26, 2021 (155) |
171 | CNV burdens in cranial meningiomas | NC_000002.11 - 234668570 | Apr 26, 2021 (155) |
172 | PharmGKB Aggregated | NC_000002.12 - 233759924 | Apr 25, 2020 (154) |
173 | Qatari | NC_000002.11 - 234668570 | Apr 25, 2020 (154) |
174 | SGDP_PRJ | NC_000002.11 - 234668570 | Apr 25, 2020 (154) |
175 | Siberian | NC_000002.11 - 234668570 | Apr 25, 2020 (154) |
176 | 38KJPN | NC_000002.12 - 233759924 | Oct 30, 2024 (157) |
177 | TopMed | NC_000002.12 - 233759924 | Apr 26, 2021 (155) |
178 | UK 10K study - Twins | NC_000002.11 - 234668570 | Oct 11, 2018 (152) |
179 | A Vietnamese Genetic Variation Database | NC_000002.11 - 234668570 | Jul 13, 2019 (153) |
180 | ALFA | NC_000002.12 - 233759924 | Oct 30, 2024 (157) |
History tab displays RefSNPs (Associated ID) from previous builds (Build) that now support the current RefSNP, and the dates, when the history was updated for each Associated ID (History Updated).
Associated ID | History Updated (Build) |
---|---|
rs12990609 | Sep 24, 2004 (123) |
rs34790730 | May 23, 2006 (127) |
rs36207722 | Oct 25, 2006 (127) |
rs61315639 | Feb 26, 2009 (130) |
rs386619532 | Aug 21, 2014 (142) |
Submission IDs | Observation SPDI | Canonical SPDI | Source RSIDs |
---|---|---|---|
ss6349546496 | NC_000002.11:234668569:C:A | NC_000002.12:233759923:C:A | |
ss6349546496 | NC_000002.11:234668569:C:G | NC_000002.12:233759923:C:G | |
ss78444692 | NC_000002.9:234450569:C:T | NC_000002.12:233759923:C:T | (self) |
ss110965202, ss111825012, ss118123012, ss201895631, ss205632455, ss276944164, ss292510946, ss481826310, ss1587548679, ss1712539934, ss3643289839 | NC_000002.10:234333308:C:T | NC_000002.12:233759923:C:T | (self) |
13257636, 7342913, 245939, 5194196, 5538493, 7780602, 2765881, 187420, 49284, 3378091, 6871054, 1798867, 7342913, 1594072, ss219881097, ss231635572, ss239083133, ss481858816, ss482818061, ss485707682, ss491333410, ss537571115, ss649966236, ss779002278, ss780687159, ss783299449, ss783360702, ss784251789, ss832560786, ss833163131, ss834464654, ss978088575, ss1070036231, ss1302134496, ss1428950089, ss1579373554, ss1606057639, ss1649051672, ss1752345218, ss1752345219, ss1798566758, ss1917761544, ss1921336161, ss1946070030, ss1958518576, ss2021216395, ss2094809166, ss2095111600, ss2149282513, ss2625108462, ss2633755412, ss2633755413, ss2703935215, ss2710928943, ss2710928944, ss2787712026, ss2985203948, ss2985825270, ss2991558423, ss3022083116, ss3344798535, ss3628314198, ss3628314199, ss3631714589, ss3633951936, ss3634818215, ss3634818216, ss3635637289, ss3636508286, ss3637389324, ss3638325646, ss3640525514, ss3640525515, ss3641122392, ss3641418537, ss3644772734, ss3652535920, ss3652535921, ss3653971967, ss3659455948, ss3729481016, ss3744488886, ss3745118104, ss3745118105, ss3758234696, ss3772614479, ss3772614480, ss3827569841, ss3837205320, ss3854854074, ss3900603208, ss3984499944, ss3984961493, ss4017055751, ss6289038307, ss6322167472, ss6323673394, ss6329932039, ss6336182597, ss8157056096, ss8314817565, ss8506837146, ss8624475465, ss8631198234, ss8799401927, ss8799563827, ss8821760177, ss8847207755, ss8847907898, ss8957463878, ss8979604197, ss8981875239, ss8981875240, ss8982417359 | NC_000002.11:234668569:C:T | NC_000002.12:233759923:C:T | (self) |
17545210, 101028869, 2035235, 6713495, 8541761, 217766, 6976, 36416934, 352656181, 6739257510, ss2240160658, ss3024368349, ss3647302824, ss3706266231, ss3725884821, ss3770996297, ss3802597182, ss3842627995, ss3950335494, ss4548833302, ss6019041114, ss6321885007, ss6349997699, ss6358689863, ss6574549840, ss8252463046, ss8452030957, ss8530019275, ss8688107864, ss8803328105, ss8853001639, ss8935201195 | NC_000002.12:233759923:C:T | NC_000002.12:233759923:C:T | (self) |
ss14494210, ss17659924, ss21574509 | NT_005120.14:599103:C:T | NC_000002.12:233759923:C:T | (self) |
ss1315995, ss5169686, ss44259633, ss50393212, ss51854787, ss66331626, ss69369239, ss75086159, ss76028792, ss81442937, ss97132036, ss132931186, ss154477894, ss159652323, ss160963094, ss170602199, ss174767711, ss410955790 | NT_005120.16:614828:C:T | NC_000002.12:233759923:C:T | (self) |
Publications tab displays PubMed articles citing the variation as a listing of PMID, Title, Author, Year, Journal, ordered by Year, descending.
PMID | Title | Author | Year | Journal |
---|---|---|---|---|
17424838 | [Genetic polymorphisms of MPO, NQO1, GSTP1, UGT1A6 associated with susceptibility of chronic benzene poisoning]. | Sun P et al. | 2007 | Wei sheng yan jiu = Journal of hygiene research |
18349273 | UGT1A1 genetic polymorphisms, endogenous estrogen exposure, soy food intake, and endometrial cancer risk. | Deming SL et al. | 2008 | Cancer epidemiology, biomarkers & prevention |
19238116 | Common variants of four bilirubin metabolism genes and their association with serum bilirubin and coronary artery disease in Chinese Han population. | Lin R et al. | 2009 | Pharmacogenetics and genomics |
19267064 | [Relationship between genetic polymorphisms of phase I and phase II metabolizing enzymes and DNA damage of workers exposed to vinyl chloride monomer]. | Ji F et al. | 2009 | Wei sheng yan jiu = Journal of hygiene research |
19414484 | Genome-wide association meta-analysis for total serum bilirubin levels. | Johnson AD et al. | 2009 | Human molecular genetics |
19419973 | Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. | Sanna S et al. | 2009 | Human molecular genetics |
19482841 | Serum bilirubin levels on ICU admission are associated with ARDS development and mortality in sepsis. | Zhai R et al. | 2009 | Thorax |
19721433 | Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. | McClay JL et al. | 2011 | Molecular psychiatry |
20639394 | Genome-wide association of serum bilirubin levels in Korean population. | Kang TW et al. | 2010 | Human molecular genetics |
21309756 | Prevalence of clinically relevant UGT1A alleles and haplotypes in African populations. | Horsfall LJ et al. | 2011 | Annals of human genetics |
21712189 | Analysis of pharmacogenetic traits in two distinct South African populations. | Ikediobi O et al. | 2011 | Human genomics |
21886157 | Human metabolic individuality in biomedical and pharmaceutical research. | Suhre K et al. | 2011 | Nature |
22085899 | UGT1A1 is a major locus influencing bilirubin levels in African Americans. | Chen G et al. | 2012 | European journal of human genetics |
22228101 | Mapping of the UGT1A locus identifies an uncommon coding variant that affects mRNA expression and protects from bladder cancer. | Tang W et al. | 2012 | Human molecular genetics |
22511988 | A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study. | Jylhävä J et al. | 2012 | PloS one |
22558097 | A genome-wide association study of total bilirubin and cholelithiasis risk in sickle cell anemia. | Milton JN et al. | 2012 | PloS one |
22888291 | Genetic variants and haplotypes of the UGT1A9, 1A7 and 1A1 genes in Chinese Han. | Zhang X et al. | 2012 | Genetics and molecular biology |
22992668 | Pharmacogenomics knowledge for personalized medicine. | Whirl-Carrillo M et al. | 2012 | Clinical pharmacology and therapeutics |
23092954 | SHAVE: shrinkage estimator measured for multiple visits increases power in GWAS of quantitative traits. | Meirelles OD et al. | 2013 | European journal of human genetics |
23642732 | Association of SNPs in the UGT1A gene cluster with total bilirubin and mortality in the Diabetes Heart Study. | Cox AJ et al. | 2013 | Atherosclerosis |
24270849 | Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. | Denny JC et al. | 2013 | Nature biotechnology |
24532860 | Case-Control Genome-wide Joint Association Study Using Semiparametric Empirical Model and Approximate Bayes Factor. | Xu J et al. | 2013 | Journal of statistical computation and simulation |
24557078 | Genomewide association study of atazanavir pharmacokinetics and hyperbilirubinemia in AIDS Clinical Trials Group protocol A5202. | Johnson DH et al. | 2014 | Pharmacogenetics and genomics |
24625756 | Genetic determinants influencing human serum metabolome among African Americans. | Yu B et al. | 2014 | PLoS genetics |
24944790 | Screening for 392 polymorphisms in 141 pharmacogenes. | Kim JY et al. | 2014 | Biomedical reports |
25110414 | Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. | Panczyk M et al. | 2014 | World journal of gastroenterology |
25262300 | Quantitative trait analysis of polymorphisms in two bilirubin metabolism enzymes to physiologic bilirubin levels in Chinese newborns. | Zhou Y et al. | 2014 | The Journal of pediatrics |
25348619 | Influence of single-nucleotide polymorphisms on deferasirox C trough levels and effectiveness. | Cusato J et al. | 2015 | The pharmacogenomics journal |
25478904 | Functional Study of Haplotypes in UGT1A1 Promoter to Find a Novel Genetic Variant Leading to Reduced Gene Expression. | Shin HJ et al. | 2015 | Therapeutic drug monitoring |
25884002 | Phenome-wide Association Study Relating Pretreatment Laboratory Parameters With Human Genetic Variants in AIDS Clinical Trials Group Protocols. | Moore CB et al. | 2015 | Open forum infectious diseases |
26039129 | Exome-Wide Association Study Identifies New Low-Frequency and Rare UGT1A1 Coding Variants and UGT1A6 Coding Variants Influencing Serum Bilirubin in Elderly Subjects: A Strobe Compliant Article. | Oussalah A et al. | 2015 | Medicine |
26180834 | Screening for UGT1A1 Genotype in Study A5257 Would Have Markedly Reduced Premature Discontinuation of Atazanavir for Hyperbilirubinemia. | Vardhanabhuti S et al. | 2015 | Open forum infectious diseases |
26223945 | Influence of UDP-Glucuronosyltransferase Polymorphisms on Stable Warfarin Doses in Patients with Mechanical Cardiac Valves. | An SH et al. | 2015 | Cardiovascular therapeutics |
26413716 | A GWAS Study on Liver Function Test Using eMERGE Network Participants. | Namjou B et al. | 2015 | PloS one |
26417955 | Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. | Gammal RS et al. | 2016 | Clinical pharmacology and therapeutics |
26628212 | Serum bilirubin concentration is modified by UGT1A1 haplotypes and influences risk of type-2 diabetes in the Norfolk Island genetic isolate. | Benton MC et al. | 2015 | BMC genetics |
27043265 | Role of pharmacogenetics on deferasirox AUC and efficacy. | Cusato J et al. | 2016 | Pharmacogenomics |
27110117 | Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder. | Medhasi S et al. | 2016 | Neuropsychiatric disease and treatment |
28346059 | Deferasirox pharmacogenetic influence on pharmacokinetic, efficacy and toxicity in a cohort of pediatric patients. | Allegra S et al. | 2017 | Pharmacogenomics |
28550460 | The impact of non-genetic and genetic factors on a stable warfarin dose in Thai patients. | Wattanachai N et al. | 2017 | European journal of clinical pharmacology |
28746172 | A genetic variant in the catechol-O-methyl transferase (COMT) gene is related to age-dependent differences in the therapeutic effect of calcium-channel blockers. | Xu J et al. | 2017 | Medicine |
29117017 | Race/ethnicity difference in the pharmacogenetics of bilirubin-related atazanavir discontinuation. | Leger P et al. | 2018 | Pharmacogenetics and genomics |
29193749 | Clinical Implementation of Pharmacogenetic Testing in a Hospital of the Spanish National Health System: Strategy and Experience Over 3 Years. | Borobia AM et al. | 2018 | Clinical and translational science |
30093869 | Biological Predictors of Clozapine Response: A Systematic Review. | Samanaite R et al. | 2018 | Frontiers in psychiatry |
30421550 | Prolonged central apnoea after intravenous morphine administration in a 12-year-old male with a UGT1A1 loss-of-function polymorphism. | Toce MS et al. | 2019 | British journal of clinical pharmacology |
30621171 | Genome-Wide Association Study (GWAS) on Bilirubin Concentrations in Subjects with Metabolic Syndrome: Sex-Specific GWAS Analysis and Gene-Diet Interactions in a Mediterranean Population. | Coltell O et al. | 2019 | Nutrients |
31019283 | Secondary actionable findings identified by exome sequencing: expected impact on the organisation of care from the study of 700 consecutive tests. | Thauvin-Robinet C et al. | 2019 | European journal of human genetics |
32128760 | A Genome-wide Association Study of Circulating Levels of Atorvastatin and Its Major Metabolites. | Turner RM et al. | 2020 | Clinical pharmacology and therapeutics |
32855344 | Genetically raised serum bilirubin levels and lung cancer: a cohort study and Mendelian randomisation using UK Biobank. | Horsfall LJ et al. | 2020 | Thorax |
32930952 | Effect of Genetic Polymorphisms on the Pharmacokinetics of Deferasirox in Healthy Chinese Subjects and an Artificial Neural Networks Model for Pharmacokinetic Prediction. | Chen J et al. | 2020 | European journal of drug metabolism and pharmacokinetics |
32936528 | Important Pharmacogenetic Information for Drugs Prescribed During the SARS-CoV-2 Infection (COVID-19). | Zubiaur P et al. | 2020 | Clinical and translational science |
33110249 | Population impact of pharmacogenetic tests in admixed populations across the Americas. | Suarez-Kurtz G et al. | 2021 | The pharmacogenomics journal |
33278020 | Metabolic Effects of Aripiprazole and Olanzapine Multiple-Dose Treatment in a Randomised Crossover Clinical Trial in Healthy Volunteers: Association with Pharmacogenetics. | Koller D et al. | 2021 | Advances in therapy |
33519226 | Genetic Diversity of Drug-Related Genes in Native Americans of the Brazilian Amazon. | Fernandes MR et al. | 2021 | Pharmacogenomics and personalized medicine |
33779967 | Pharmacokinetics of Eltrombopag in Healthy Chinese Subjects and Effect of Sex and Genetic Polymorphism on its Pharmacokinetic and Pharmacodynamic Variability. | Chen J et al. | 2021 | European journal of drug metabolism and pharmacokinetics |
33805706 | SLCO1B1 Phenotype and CYP3A5 Polymorphism Significantly Affect Atorvastatin Bioavailability. | Zubiaur P et al. | 2021 | Journal of personalized medicine |
33995083 | Dexketoprofen Pharmacokinetics is not Significantly Altered by Genetic Polymorphism. | Mejía-Abril G et al. | 2021 | Frontiers in pharmacology |
34093191 | Pharmacogenetic Associations Between Atazanavir/UGT1A1*28 and Efavirenz/rs3745274 (CYP2B6) Account for Specific Adverse Reactions in Chilean Patients Undergoing Antiretroviral Therapy. | Poblete D et al. | 2021 | Frontiers in pharmacology |
34117260 | A UGT1A1 variant is associated with serum total bilirubin levels, which are causal for hypertension in African-ancestry individuals. | Chen G et al. | 2021 | NPJ genomic medicine |
34621706 | Comprehensive analysis of important pharmacogenes in Koreans using the DMET™ platform. | Kim B et al. | 2021 | Translational and clinical pharmacology |
34690761 | Effects of Cytochrome P450 and Transporter Polymorphisms on the Bioavailability and Safety of Dutasteride and Tamsulosin. | Villapalos-García G et al. | 2021 | Frontiers in pharmacology |
34703007 | Integration of DNA sequencing with population pharmacokinetics to improve the prediction of irinotecan exposure in cancer patients. | Karas S et al. | 2022 | British journal of cancer |
34852805 | Ensemble learning for the early prediction of neonatal jaundice with genetic features. | Deng H et al. | 2021 | BMC medical informatics and decision making |
35326157 | Genetic Variations on Redox Control in Cardiometabolic Diseases: The Role of Nrf2. | Zazueta C et al. | 2022 | Antioxidants (Basel, Switzerland) |
35646073 | SLC4A4, FRAS1, and SULT1A1 Genetic Variations Associated With Dabigatran Metabolism in a Healthy Chinese Population. | Xie Q et al. | 2022 | Frontiers in genetics |
35745658 | Will the Use of Pharmacogenetics Improve Treatment Efficiency in COVID-19? | Franczyk B et al. | 2022 | Pharmaceuticals (Basel, Switzerland) |
35866816 | Impact of VKORC1, CYP2C9, CYP1A2, UGT1A1, and GGCX polymorphisms on warfarin maintenance dose: Exploring a new algorithm in South Chinese patients accept mechanical heart valve replacement. | Li J et al. | 2022 | Medicine |
36032496 | Association of MTHFR gene polymorphism C677T (rs1801133) studies with early primary knee osteoarthritis in a South Indian population: a hospital-based study. | Poornima S et al. | 2022 | African health sciences |
36065758 | CYP2C8*3 and *4 define CYP2C8 phenotype: An approach with the substrate cinitapride. | Campodónico DM et al. | 2022 | Clinical and translational science |
The Flanks tab provides retrieving flanking sequences of a SNP on all molecules that have placements.
Genomic regions, transcripts, and products
Top▲
Help
NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.
NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.