dbSNP Short Genetic Variations
Welcome to the Reference SNP (rs) Report
All alleles are reported in the Forward orientation. Click on the Variant Details tab for details on Genomic Placement, Gene, and Amino Acid changes. HGVS names are in the HGVS tab.
Reference SNP (rs) Report
This page reports data for a single dbSNP Reference SNP variation (RefSNP or rs) from the new redesigned dbSNP build.
Top of the page reports a concise summary for the rs, with more specific details included in the corresponding tabs below.
All alleles are reported in the Forward orientation. Use the Genomic View to inspect the nucleotides flanking the variant, and its neighbors.
For more information see Help documentation.
rs7900194
Current Build 157
Released September 3, 2024
- Organism
- Homo sapiens
- Position
-
chr10:94942309 (GRCh38.p14) Help
The anchor position for this RefSNP. Includes all nucleotides potentially affected by this change, thus it can differ from HGVS, which is right-shifted. See here for details.
- Alleles
- G>A / G>C / G>T
- Variation Type
- SNV Single Nucleotide Variation
- Frequency
-
A=0.00511 (349/68254, ALFA)A=0.02007 (261/13002, GO-ESP)T=0.0051 (37/7234, Korea4K) (+ 9 more)
- Clinical Significance
- Reported in ClinVar
- Gene : Consequence
- CYP2C9 : Missense Variant
- Publications
- 35 citations
- Genomic View
- See rs on genome
ALFA Allele Frequency
The ALFA project provide aggregate allele frequency from dbGaP. More information is available on the project page including descriptions, data access, and terms of use.
Population | Group | Sample Size | Ref Allele | Alt Allele | Ref HMOZ | Alt HMOZ | HTRZ | HWEP |
---|---|---|---|---|---|---|---|---|
Total | Global | 68254 | G=0.99487 | A=0.00511, T=0.00001, C=0.00000 | 0.990154 | 0.000381 | 0.009465 | 32 |
European | Sub | 50144 | G=0.99974 | A=0.00026, T=0.00000, C=0.00000 | 0.999481 | 0.0 | 0.000519 | 0 |
African | Sub | 8134 | G=0.9634 | A=0.0366, T=0.0000, C=0.0000 | 0.929678 | 0.002951 | 0.067372 | 5 |
African Others | Sub | 294 | G=0.959 | A=0.041, T=0.000, C=0.000 | 0.92517 | 0.006803 | 0.068027 | 2 |
African American | Sub | 7840 | G=0.9635 | A=0.0365, T=0.0000, C=0.0000 | 0.929847 | 0.002806 | 0.067347 | 4 |
Asian | Sub | 210 | G=0.995 | A=0.000, T=0.005, C=0.000 | 1.0 | 0.0 | 0.0 | N/A |
East Asian | Sub | 154 | G=0.994 | A=0.000, T=0.006, C=0.000 | 1.0 | 0.0 | 0.0 | N/A |
Other Asian | Sub | 56 | G=1.00 | A=0.00, T=0.00, C=0.00 | 1.0 | 0.0 | 0.0 | N/A |
Latin American 1 | Sub | 498 | G=0.974 | A=0.026, T=0.000, C=0.000 | 0.951807 | 0.004016 | 0.044177 | 3 |
Latin American 2 | Sub | 626 | G=1.000 | A=0.000, T=0.000, C=0.000 | 1.0 | 0.0 | 0.0 | N/A |
South Asian | Sub | 98 | G=1.00 | A=0.00, T=0.00, C=0.00 | 1.0 | 0.0 | 0.0 | N/A |
Other | Sub | 8544 | G=0.9971 | A=0.0029, T=0.0000, C=0.0000 | 0.994148 | 0.0 | 0.005852 | 0 |
Frequency tab displays a table of the reference and alternate allele frequencies reported by various studies and populations. Table lines, where Population="Global" refer to the entire study population, whereas lines, where Group="Sub", refer to a study-specific population subgroupings (i.e. AFR, CAU, etc.), if available. Frequency for the alternate allele (Alt Allele) is a ratio of samples observed-to-total, where the numerator (observed samples) is the number of chromosomes in the study with the minor allele present (found in "Sample size", where Group="Sub"), and the denominator (total samples) is the total number of all chromosomes in the study for the variant (found in "Sample size", where Group="Study-wide" and Population="Global").
DownloadStudy | Population | Group | Sample Size | Ref Allele | Alt Allele |
---|---|---|---|---|---|
Allele Frequency Aggregator | Total | Global | 68254 | G=0.99487 | A=0.00511, C=0.00000, T=0.00001 |
Allele Frequency Aggregator | European | Sub | 50144 | G=0.99974 | A=0.00026, C=0.00000, T=0.00000 |
Allele Frequency Aggregator | Other | Sub | 8544 | G=0.9971 | A=0.0029, C=0.0000, T=0.0000 |
Allele Frequency Aggregator | African | Sub | 8134 | G=0.9634 | A=0.0366, C=0.0000, T=0.0000 |
Allele Frequency Aggregator | Latin American 2 | Sub | 626 | G=1.000 | A=0.000, C=0.000, T=0.000 |
Allele Frequency Aggregator | Latin American 1 | Sub | 498 | G=0.974 | A=0.026, C=0.000, T=0.000 |
Allele Frequency Aggregator | Asian | Sub | 210 | G=0.995 | A=0.000, C=0.000, T=0.005 |
Allele Frequency Aggregator | South Asian | Sub | 98 | G=1.00 | A=0.00, C=0.00, T=0.00 |
GO Exome Sequencing Project | Global | Study-wide | 13002 | G=0.97993 | A=0.02007 |
GO Exome Sequencing Project | European American | Sub | 8596 | G=0.9994 | A=0.0006 |
GO Exome Sequencing Project | African American | Sub | 4406 | G=0.9419 | A=0.0581 |
Korean Genome Project 4K | KOREAN | Study-wide | 7234 | G=0.9949 | T=0.0051 |
1000Genomes_30X | Global | Study-wide | 6404 | G=0.9844 | A=0.0156 |
1000Genomes_30X | African | Sub | 1786 | G=0.9462 | A=0.0538 |
1000Genomes_30X | Europe | Sub | 1266 | G=0.9984 | A=0.0016 |
1000Genomes_30X | South Asian | Sub | 1202 | G=0.9992 | A=0.0008 |
1000Genomes_30X | East Asian | Sub | 1170 | G=1.0000 | A=0.0000 |
1000Genomes_30X | American | Sub | 980 | G=0.999 | A=0.001 |
1000Genomes | Global | Study-wide | 5008 | G=0.9852 | A=0.0148 |
1000Genomes | African | Sub | 1322 | G=0.9470 | A=0.0530 |
1000Genomes | East Asian | Sub | 1008 | G=1.0000 | A=0.0000 |
1000Genomes | Europe | Sub | 1006 | G=0.9980 | A=0.0020 |
1000Genomes | South Asian | Sub | 978 | G=0.999 | A=0.001 |
1000Genomes | American | Sub | 694 | G=0.999 | A=0.001 |
KOREAN population from KRGDB | KOREAN | Study-wide | 2922 | G=0.9979 | T=0.0021 |
Korean Genome Project | KOREAN | Study-wide | 1832 | G=0.9962 | T=0.0038 |
Genome of the Netherlands Release 5 | Genome of the Netherlands | Study-wide | 998 | G=0.999 | A=0.001 |
Medical Genome Project healthy controls from Spanish population | Spanish controls | Study-wide | 534 | G=0.994 | A=0.006 |
PharmGKB Aggregated | Global | Study-wide | 352 | G=0.989 | A=0.011 |
PharmGKB Aggregated | PA149567142 | Sub | 352 | G=0.989 | A=0.011 |
Qatari | Global | Study-wide | 216 | G=0.991 | A=0.009 |
SGDP_PRJ | Global | Study-wide | 12 | G=0.33 | A=0.67 |
Variant Details tab shows known variant placements on genomic sequences: chromosomes (NC_), RefSeqGene, pseudogenes or genomic regions (NG_), and in a separate table: on transcripts (NM_) and protein sequences (NP_). The corresponding transcript and protein locations are listed in adjacent lines, along with molecular consequences from Sequence Ontology. When no protein placement is available, only the transcript is listed. Column "Codon[Amino acid]" shows the actual base change in the format of "Reference > Alternate" allele, including the nucleotide codon change in transcripts, and the amino acid change in proteins, respectively, allowing for known ribosomal slippage sites. To view nucleotides adjacent to the variant use the Genomic View at the bottom of the page - zoom into the sequence until the nucleotides around the variant become visible.
Sequence name | Change |
---|---|
GRCh38.p14 chr 10 | NC_000010.11:g.94942309G>A |
GRCh38.p14 chr 10 | NC_000010.11:g.94942309G>C |
GRCh38.p14 chr 10 | NC_000010.11:g.94942309G>T |
GRCh37.p13 chr 10 | NC_000010.10:g.96702066G>A |
GRCh37.p13 chr 10 | NC_000010.10:g.96702066G>C |
GRCh37.p13 chr 10 | NC_000010.10:g.96702066G>T |
CYP2C9 RefSeqGene (LRG_1195) | NG_008385.2:g.9152G>A |
CYP2C9 RefSeqGene (LRG_1195) | NG_008385.2:g.9152G>C |
CYP2C9 RefSeqGene (LRG_1195) | NG_008385.2:g.9152G>T |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
CYP2C9 transcript | NM_000771.4:c.449G>A | R [CGC] > H [CAC] | Coding Sequence Variant |
cytochrome P450 2C9 | NP_000762.2:p.Arg150His | R (Arg) > H (His) | Missense Variant |
CYP2C9 transcript | NM_000771.4:c.449G>C | R [CGC] > P [CCC] | Coding Sequence Variant |
cytochrome P450 2C9 | NP_000762.2:p.Arg150Pro | R (Arg) > P (Pro) | Missense Variant |
CYP2C9 transcript | NM_000771.4:c.449G>T | R [CGC] > L [CTC] | Coding Sequence Variant |
cytochrome P450 2C9 | NP_000762.2:p.Arg150Leu | R (Arg) > L (Leu) | Missense Variant |
Clinical Significance tab shows a list of clinical significance entries from ClinVar associated with the variation, per allele. Click on the RCV accession (i.e. RCV000001615.2) or Allele ID (i.e. 12274) to access full ClinVar report.
ClinVar Accession | Disease Names | Clinical Significance |
---|---|---|
RCV000787933.10 | Flurbiprofen response | Drug-Response |
RCV000788097.10 | Lesinurad response | Drug-Response |
RCV000788103.10 | Piroxicam response | Drug-Response |
RCV001522200.16 | not provided | Benign-Likely-Benign |
Aliases tab displays HGVS names representing the variant placements and allele changes on genomic, transcript and protein sequences, per allele. HGVS name is an expression for reporting sequence accession and version, sequence type, position, and allele change. The column "Note" can have two values: "diff" means that there is a difference between the reference allele (variation interval) at the placement reported in HGVS name and the reference alleles reported in other HGVS names, and "rev" means that the sequence of this variation interval at the placement reported in HGVS name is in reverse orientation to the sequence(s) of this variation in other HGVS names not labeled as "rev".
Placement | G= | A | C | T |
---|---|---|---|---|
GRCh38.p14 chr 10 | NC_000010.11:g.94942309= | NC_000010.11:g.94942309G>A | NC_000010.11:g.94942309G>C | NC_000010.11:g.94942309G>T |
GRCh37.p13 chr 10 | NC_000010.10:g.96702066= | NC_000010.10:g.96702066G>A | NC_000010.10:g.96702066G>C | NC_000010.10:g.96702066G>T |
CYP2C9 RefSeqGene (LRG_1195) | NG_008385.2:g.9152= | NG_008385.2:g.9152G>A | NG_008385.2:g.9152G>C | NG_008385.2:g.9152G>T |
CYP2C9 transcript | NM_000771.4:c.449= | NM_000771.4:c.449G>A | NM_000771.4:c.449G>C | NM_000771.4:c.449G>T |
CYP2C9 transcript | NM_000771.3:c.449= | NM_000771.3:c.449G>A | NM_000771.3:c.449G>C | NM_000771.3:c.449G>T |
cytochrome P450 2C9 | NP_000762.2:p.Arg150= | NP_000762.2:p.Arg150His | NP_000762.2:p.Arg150Pro | NP_000762.2:p.Arg150Leu |
Submissions tab displays variations originally submitted to dbSNP, now supporting this RefSNP cluster (rs). We display Submitter handle, Submission identifier, Date and Build number, when the submission appeared for the first time. Direct submissions to dbSNP have Submission ID in the form of an ss-prefixed number (ss#). Other supporting variations are listed in the table without ss#.
No | Submitter | Submission ID | Date (Build) |
---|---|---|---|
1 | WI_SSAHASNP | ss12072179 | Jul 11, 2003 (116) |
2 | EGP_SNPS | ss12588497 | Dec 05, 2003 (119) |
3 | BIOVENTURES | ss32475973 | May 24, 2005 (125) |
4 | APPLERA_GI | ss48404893 | Mar 14, 2006 (126) |
5 | PHARMGKB_AB_DME | ss84158163 | Dec 14, 2007 (130) |
6 | HGSV | ss84896810 | Dec 14, 2007 (130) |
7 | SEATTLESEQ | ss159721126 | Dec 01, 2009 (147) |
8 | BUSHMAN | ss201886885 | Jul 04, 2010 (132) |
9 | ILLUMINA | ss244311370 | Jul 04, 2010 (132) |
10 | 1000GENOMES | ss336318563 | May 09, 2011 (134) |
11 | NHLBI-ESP | ss342304159 | May 09, 2011 (134) |
12 | GMI | ss475760497 | May 04, 2012 (137) |
13 | 1000GENOMES | ss491001667 | May 04, 2012 (137) |
14 | EXOME_CHIP | ss491438630 | May 04, 2012 (137) |
15 | CLINSEQ_SNP | ss491629965 | May 04, 2012 (137) |
16 | SSMP | ss657185860 | Apr 25, 2013 (138) |
17 | EVA-GONL | ss987806024 | Aug 21, 2014 (142) |
18 | JMKIDD_LAB | ss1067514964 | Aug 21, 2014 (142) |
19 | 1000GENOMES | ss1338629999 | Aug 21, 2014 (142) |
20 | EVA_EXAC | ss1690012452 | Apr 01, 2015 (144) |
21 | EVA_EXAC | ss1690012453 | Apr 01, 2015 (144) |
22 | EVA_MGP | ss1711265818 | Apr 01, 2015 (144) |
23 | WEILL_CORNELL_DGM | ss1931172222 | Feb 12, 2016 (147) |
24 | ILLUMINA | ss1959285032 | Feb 12, 2016 (147) |
25 | HUMAN_LONGEVITY | ss2177158528 | Dec 20, 2016 (150) |
26 | GRF | ss2698843914 | Nov 08, 2017 (151) |
27 | ILLUMINA | ss2710717586 | Nov 08, 2017 (151) |
28 | GNOMAD | ss2738421525 | Nov 08, 2017 (151) |
29 | GNOMAD | ss2748441685 | Nov 08, 2017 (151) |
30 | GNOMAD | ss2892145623 | Nov 08, 2017 (151) |
31 | ILLUMINA | ss3021264931 | Nov 08, 2017 (151) |
32 | CSIRBIOHTS | ss3029638038 | Nov 08, 2017 (151) |
33 | ILLUMINA | ss3651623355 | Oct 12, 2018 (152) |
34 | EVA_DECODE | ss3690464598 | Jul 13, 2019 (153) |
35 | EVA | ss3748470125 | Jul 13, 2019 (153) |
36 | KHV_HUMAN_GENOMES | ss3813836614 | Jul 13, 2019 (153) |
37 | EVA | ss3824541053 | Apr 26, 2020 (154) |
38 | SGDP_PRJ | ss3874830819 | Apr 26, 2020 (154) |
39 | KRGDB | ss3922959417 | Apr 26, 2020 (154) |
40 | KOGIC | ss3968461150 | Apr 26, 2020 (154) |
41 | EVA | ss3986493487 | Apr 26, 2021 (155) |
42 | TOPMED | ss4862681884 | Apr 26, 2021 (155) |
43 | TOPMED | ss4862681885 | Apr 26, 2021 (155) |
44 | TOPMED | ss4862681886 | Apr 26, 2021 (155) |
45 | TOMMO_GENOMICS | ss6114217116 | Nov 02, 2024 (157) |
46 | TOMMO_GENOMICS | ss6114217117 | Nov 02, 2024 (157) |
47 | EVA | ss6253832972 | Nov 02, 2024 (157) |
48 | EVA | ss6307413369 | Nov 02, 2024 (157) |
49 | KOGIC | ss6382292618 | Nov 02, 2024 (157) |
50 | GNOMAD | ss6440426762 | Nov 02, 2024 (157) |
51 | GNOMAD | ss6440426763 | Nov 02, 2024 (157) |
52 | GNOMAD | ss6859925587 | Nov 02, 2024 (157) |
53 | GNOMAD | ss6859925588 | Nov 02, 2024 (157) |
54 | GNOMAD | ss6859925589 | Nov 02, 2024 (157) |
55 | TOMMO_GENOMICS | ss8198975933 | Nov 02, 2024 (157) |
56 | TOMMO_GENOMICS | ss8198975934 | Nov 02, 2024 (157) |
57 | 1000G_HIGH_COVERAGE | ss8285093354 | Nov 02, 2024 (157) |
58 | TRAN_CS_UWATERLOO | ss8314429332 | Nov 02, 2024 (157) |
59 | EVA | ss8395331691 | Nov 02, 2024 (157) |
60 | HUGCELL_USP | ss8480551996 | Nov 02, 2024 (157) |
61 | HUGCELL_USP | ss8480551997 | Nov 02, 2024 (157) |
62 | EVA | ss8510130049 | Nov 02, 2024 (157) |
63 | EVA | ss8512473910 | Nov 02, 2024 (157) |
64 | 1000G_HIGH_COVERAGE | ss8579573369 | Nov 02, 2024 (157) |
65 | SANFORD_IMAGENETICS | ss8649889104 | Nov 02, 2024 (157) |
66 | TOMMO_GENOMICS | ss8745195962 | Nov 02, 2024 (157) |
67 | TOMMO_GENOMICS | ss8745195963 | Nov 02, 2024 (157) |
68 | EVA | ss8799403704 | Nov 02, 2024 (157) |
69 | YY_MCH | ss8811793723 | Nov 02, 2024 (157) |
70 | EVA | ss8824809271 | Nov 02, 2024 (157) |
71 | EVA | ss8848304505 | Nov 02, 2024 (157) |
72 | EVA | ss8880091629 | Nov 02, 2024 (157) |
73 | EVA | ss8941175435 | Nov 02, 2024 (157) |
74 | EVA | ss8982151862 | Nov 02, 2024 (157) |
75 | 1000Genomes | NC_000010.10 - 96702066 | Oct 12, 2018 (152) |
76 | 1000Genomes_30X | NC_000010.11 - 94942309 | Nov 02, 2024 (157) |
77 |
ExAC
Submission ignored due to conflicting rows: |
- | Oct 12, 2018 (152) |
78 |
ExAC
Submission ignored due to conflicting rows: |
- | Oct 12, 2018 (152) |
79 |
gnomAD v4 - Exomes
Submission ignored due to conflicting rows: |
- | Nov 02, 2024 (157) |
80 |
gnomAD v4 - Exomes
Submission ignored due to conflicting rows: |
- | Nov 02, 2024 (157) |
81 |
gnomAD v4 - Genomes
Submission ignored due to conflicting rows: |
- | Nov 02, 2024 (157) |
82 |
gnomAD v4 - Genomes
Submission ignored due to conflicting rows: |
- | Nov 02, 2024 (157) |
83 |
gnomAD v4 - Genomes
Submission ignored due to conflicting rows: |
- | Nov 02, 2024 (157) |
84 | GO Exome Sequencing Project | NC_000010.10 - 96702066 | Oct 12, 2018 (152) |
85 | Genome of the Netherlands Release 5 | NC_000010.10 - 96702066 | Apr 26, 2020 (154) |
86 | KOREAN population from KRGDB | NC_000010.10 - 96702066 | Apr 26, 2020 (154) |
87 | Korean Genome Project | NC_000010.11 - 94942309 | Apr 26, 2020 (154) |
88 | Korean Genome Project 4K | NC_000010.11 - 94942309 | Nov 02, 2024 (157) |
89 | Medical Genome Project healthy controls from Spanish population | NC_000010.10 - 96702066 | Apr 26, 2020 (154) |
90 | PharmGKB Aggregated | NC_000010.11 - 94942309 | Apr 26, 2020 (154) |
91 | Qatari | NC_000010.10 - 96702066 | Apr 26, 2020 (154) |
92 | SGDP_PRJ | NC_000010.10 - 96702066 | Apr 26, 2020 (154) |
93 |
38KJPN
Submission ignored due to conflicting rows: |
- | Nov 02, 2024 (157) |
94 |
38KJPN
Submission ignored due to conflicting rows: |
- | Nov 02, 2024 (157) |
95 |
TopMed
Submission ignored due to conflicting rows: |
- | Apr 26, 2021 (155) |
96 |
TopMed
Submission ignored due to conflicting rows: |
- | Apr 26, 2021 (155) |
97 |
TopMed
Submission ignored due to conflicting rows: |
- | Apr 26, 2021 (155) |
98 | ALFA | NC_000010.11 - 94942309 | Nov 02, 2024 (157) |
99 | ClinVar | RCV000787933.10 | Nov 02, 2024 (157) |
100 | ClinVar | RCV000788097.10 | Nov 02, 2024 (157) |
101 | ClinVar | RCV000788103.10 | Nov 02, 2024 (157) |
102 | ClinVar | RCV001522200.16 | Nov 02, 2024 (157) |
History tab displays RefSNPs (Associated ID) from previous builds (Build) that now support the current RefSNP, and the dates, when the history was updated for each Associated ID (History Updated).
Associated ID | History Updated (Build) |
---|---|
rs57530584 | May 23, 2008 (130) |
rs75838422 | Jul 19, 2016 (147) |
Submission IDs | Observation SPDI | Canonical SPDI | Source RSIDs |
---|---|---|---|
ss84896810 | NC_000010.8:96692055:G:A | NC_000010.11:94942308:G:A | (self) |
ss201886885, ss491629965 | NC_000010.9:96692055:G:A | NC_000010.11:94942308:G:A | (self) |
51061594, 998734, 12640838, 381578, 13214152, 26847799, ss336318563, ss342304159, ss491001667, ss491438630, ss657185860, ss987806024, ss1067514964, ss1338629999, ss1690012452, ss1711265818, ss1931172222, ss1959285032, ss2710717586, ss2738421525, ss2748441685, ss2892145623, ss3021264931, ss3029638038, ss3651623355, ss3824541053, ss3874830819, ss3986493487, ss6253832972, ss6307413369, ss8198975934, ss8395331691, ss8510130049, ss8512473910, ss8649889104, ss8824809271, ss8848304505, ss8941175435, ss8982151862 | NC_000010.10:96702065:G:A | NC_000010.11:94942308:G:A | (self) |
RCV000787933.10, RCV000788097.10, RCV000788103.10, RCV001522200.16, 67099304, 1149, 8742123881, ss2177158528, ss3690464598, ss3813836614, ss4862681884, ss6114217117, ss6440426762, ss6859925587, ss8285093354, ss8314429332, ss8480551996, ss8579573369, ss8745195963, ss8880091629 | NC_000010.11:94942308:G:A | NC_000010.11:94942308:G:A | (self) |
ss12072179 | NT_030059.10:15140623:G:A | NC_000010.11:94942308:G:A | (self) |
ss12588497, ss32475973, ss48404893, ss84158163, ss159721126, ss244311370 | NT_030059.13:47506529:G:A | NC_000010.11:94942308:G:A | (self) |
ss2748441685, ss2892145623 | NC_000010.10:96702065:G:C | NC_000010.11:94942308:G:C | (self) |
8742123881, ss4862681885, ss6859925588 | NC_000010.11:94942308:G:C | NC_000010.11:94942308:G:C | (self) |
ss475760497 | NC_000010.9:96692055:G:T | NC_000010.11:94942308:G:T | (self) |
30136811, ss1690012453, ss2698843914, ss2738421525, ss2748441685, ss2892145623, ss3748470125, ss3922959417, ss8198975933, ss8799403704 | NC_000010.10:96702065:G:T | NC_000010.11:94942308:G:T | (self) |
24839151, 32144516, 8742123881, ss2177158528, ss3968461150, ss4862681886, ss6114217116, ss6382292618, ss6440426763, ss6859925589, ss8480551997, ss8745195962, ss8811793723 | NC_000010.11:94942308:G:T | NC_000010.11:94942308:G:T | (self) |
Publications tab displays PubMed articles citing the variation as a listing of PMID, Title, Author, Year, Journal, ordered by Year, descending.
PMID | Title | Author | Year | Journal |
---|---|---|---|---|
19663669 | CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. | Scott SA et al. | 2009 | Pharmacogenomics |
20072124 | Genetic and clinical predictors of warfarin dose requirements in African Americans. | Cavallari LH et al. | 2010 | Clinical pharmacology and therapeutics |
20150829 | Cytochrome P450 2C9-CYP2C9. | Van Booven D et al. | 2010 | Pharmacogenetics and genomics |
21228733 | Genetic and nongenetic factors associated with warfarin dose requirements in Egyptian patients. | Shahin MH et al. | 2011 | Pharmacogenetics and genomics |
21270790 | The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. | Perera MA et al. | 2011 | Clinical pharmacology and therapeutics |
21575037 | Population diversity and the performance of warfarin dosing algorithms. | Suarez-Kurtz G et al. | 2011 | British journal of clinical pharmacology |
21635147 | Novel CYP2C9 and VKORC1 gene variants associated with warfarin dosage variability in the South African black population. | Mitchell C et al. | 2011 | Pharmacogenomics |
21639946 | Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians. | Suriapranata IM et al. | 2011 | BMC medical genetics |
21918509 | Pharmacogenomics: application to the management of cardiovascular disease. | Johnson JA et al. | 2011 | Clinical pharmacology and therapeutics |
22329724 | Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. | Ramirez AH et al. | 2012 | Pharmacogenomics |
22378156 | Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. | Liu Y et al. | 2012 | Clinical pharmacology and therapeutics |
22491019 | Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. | Martis S et al. | 2013 | The pharmacogenomics journal |
22552919 | Bioinformatics and variability in drug response: a protein structural perspective. | Lahti JL et al. | 2012 | Journal of the Royal Society, Interface |
22676192 | Retrospective evidence for clinical validity of expanded genetic model in warfarin dose optimization in a South Indian population. | Pavani A et al. | 2012 | Pharmacogenomics |
22676711 | Pharmacogenomics of warfarin in populations of African descent. | Suarez-Kurtz G et al. | 2013 | British journal of clinical pharmacology |
22992668 | Pharmacogenomics knowledge for personalized medicine. | Whirl-Carrillo M et al. | 2012 | Clinical pharmacology and therapeutics |
23376925 | CYP2C9 promoter region single-nucleotide polymorphisms linked to the R150H polymorphism are functional suggesting their role in CYP2C9*8-mediated effects. | Cavallari LH et al. | 2013 | Pharmacogenetics and genomics |
24018621 | Ethnicity-specific pharmacogenetics: the case of warfarin in African Americans. | Hernandez W et al. | 2014 | The pharmacogenomics journal |
25714468 | A systematic approach to the reporting of medically relevant findings from whole genome sequencing. | McLaughlin HM et al. | 2014 | BMC medical genetics |
26745506 | A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics. | Duconge J et al. | 2016 | PloS one |
27453700 | Prediction of Warfarin Dose in Pediatric Patients: An Evaluation of the Predictive Performance of Several Models. | Marek E et al. | 2016 | The journal of pediatric pharmacology and therapeutics |
27632229 | Genetic determinants of variability in warfarin response after the dose-titration phase. | Iwuchukwu OF et al. | 2016 | Pharmacogenetics and genomics |
28603633 | In vitro metabolism of exemestane by hepatic cytochrome P450s: impact of nonsynonymous polymorphisms on formation of the active metabolite 17β-dihydroexemestane. | Peterson A et al. | 2017 | Pharmacology research & perspectives |
29681089 | Genetic variation in biotransformation enzymes, air pollution exposures, and risk of spina bifida. | Padula AM et al. | 2018 | American journal of medical genetics. Part A |
30758238 | Development and Cross-Validation of High-Resolution Melting Analysis-Based Cardiovascular Pharmacogenetics Genotyping Panel. | Langaee T et al. | 2019 | Genetic testing and molecular biomarkers |
32326111 | Role of Genetic Variations in the Hepatic Handling of Drugs. | Marin JJG et al. | 2020 | International journal of molecular sciences |
32380173 | Recommendations for Clinical Warfarin Genotyping Allele Selection: A Report of the Association for Molecular Pathology and the College of American Pathologists. | Pratt VM et al. | 2020 | The Journal of molecular diagnostics |
33519226 | Genetic Diversity of Drug-Related Genes in Native Americans of the Brazilian Amazon. | Fernandes MR et al. | 2021 | Pharmacogenomics and personalized medicine |
34382722 | Profiling of warfarin pharmacokinetics-associated genetic variants: Black Africans portray unique genetic markers important for an African specific warfarin pharmacogenetics-dosing algorithm. | Ndadza A et al. | 2021 | Journal of thrombosis and haemostasis |
34690761 | Effects of Cytochrome P450 and Transporter Polymorphisms on the Bioavailability and Safety of Dutasteride and Tamsulosin. | Villapalos-García G et al. | 2021 | Frontiers in pharmacology |
34958284 | Warfarin Pharmacogenomics for Precision Medicine in Real-Life Clinical Practice in Southern Africa: Harnessing 73 Variants in 29 Pharmacogenes. | Muyambo S et al. | 2022 | Omics |
35089958 | Identification of pharmacogenetic variants from large scale next generation sequencing data in the Saudi population. | Goljan E et al. | 2022 | PloS one |
35761855 | Pharmacogenetics of Breast Cancer Treatments: A Sub-Saharan Africa Perspective. | Nthontho KC et al. | 2022 | Pharmacogenomics and personalized medicine |
36164570 | Prevalence of exposure to pharmacogenetic drugs by the Saudis treated at the health care centers of the Ministry of National Guard. | Alshabeeb MA et al. | 2022 | Saudi pharmaceutical journal |
36210801 | A genome-wide association study of plasma concentrations of warfarin enantiomers and metabolites in sub-Saharan black-African patients. | Asiimwe IG et al. | 2022 | Frontiers in pharmacology |
The Flanks tab provides retrieving flanking sequences of a SNP on all molecules that have placements.
Genomic regions, transcripts, and products
Top▲
Help
NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.
NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.