Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Jun;10(1):1-9.
doi: 10.1006/prep.1996.0703.

Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum

Affiliations
Comparative Study

Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum

Y Z Wang et al. Protein Expr Purif. 1997 Jun.

Abstract

Homoprotocatechuate (hpca, 3,4-dihydroxyphenylacetate) is a central intermediate for the bacterial degradation of aromatic compounds. Homoprotocatechuate 2,3-dioxygenase (HPCD) catalyzes the key ring cleavage step in the metabolism of hpca by the Gram (+) bacterium Brevibacterium fuscum to yield alpha-hydroxy-delta-carboxymethyl cis-muconic semialdehyde. A genomic DNA library of B. fuscum was constructed in Escherichia coli using a cosmid vector and screened by spraying the cells with hpca. One clone was found to contain the gene for HPCD based on its ability to convert hpca into the yellow-colored product. This cosmid clone was further subcloned and the gene for HPCD was localized and sequenced. The open reading frame codes for a protein with 365 amino acids and M(r) = 41,699, in accord with the characteristics of the previously purified wild-type enzyme. The gene for HPCD was overexpressed in E. coli to approximately 30% of the total soluble protein, and purification of the recombinant enzyme to apparent homogeneity was achieved by a two-step procedure. Iron was the only abundant metal found in the purified recombinant enzyme, and the specific activity per iron was comparable to that observed for the wild-type enzyme. The deduced amino acid sequence of HPCD has a very high level of homology (78.6% identity in the 337-aa overlap) to the manganese-dependent homoprotocatechuate 2,3-dioxygenase (MndD) from Arthrobacter globiformis CM-2. The basis for the difference in metal selection by HPCD and MndD was investigated by mutagenesis of a 50-base-pair region of the HPCD gene containing three frame shifts relative to the MndD gene. The purified triple mutant of HPCD did not exhibit a significant change in the metal content; therefore, other factors must contribute to the selection of the active site metal.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources