Aggregate-based sub-CMC Solubilization of Hexadecane by Surfactants
- PMID: 26925230
- PMCID: PMC4765384
- DOI: 10.1039/C5RA12388G
Aggregate-based sub-CMC Solubilization of Hexadecane by Surfactants
Abstract
Solubilization of hexadecane by two surfactants, SDBS and Triton X-100, at concentrations near the critical micelle concentration (CMC) and the related aggregation behavior was investigated in this study. Solubilization was observed at surfactant concentrations lower than CMC, and the apparent solubility of hexadecane increased linearly with surfactant concentration for both surfactants. The capacity of SDBS to solubilize hexadecane is stronger at concentrations below CMC than above CMC. In contrast, Triton X-100 shows no difference. The results of dynamic light scattering (DLS) and cryogenic TEM analysis show aggregate formation at surfactant concentrations lower than CMC. DLS-based size of the aggregates (d) decreases with increasing surfactant concentration. Zeta potential of the SDBS aggregates decreases with increasing SDBS concentration, whereas it increases for Triton X-100. The surface excess (Γ) of SDBS calculated based on hexadecane solubility and aggregate size data increases rapidly with increasing bulk concentration, and then asymptotically approaches the maximum surface excess (Γmax). Conversely, there is only a minor increase in Γ for Triton X-100. Comparison of Γ and d indicates that excess of surfactant molecules at aggregate surface has great impact on surface curvature. The results of this study demonstrate formation of aggregates at surfactant concentrations below CMC for hexadecane solubilization, and indicate the potential of employing low-concentration strategy for surfactant application such as remediation of HOC contaminated sites.
Keywords: SDBS; Triton X-100; aggregation; critical micelle concentration; solubilization; surfactant.
Similar articles
-
Aggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.New J Chem. 2016 Mar 1;40(3):2028-2035. doi: 10.1039/C5NJ02108A. Epub 2015 Dec 7. New J Chem. 2016. PMID: 27547030 Free PMC article.
-
Sub-CMC solubilization of n-alkanes by rhamnolipid biosurfactant: the Influence of rhamnolipid molecular structure.Colloids Surf B Biointerfaces. 2020 Apr 18;192:111049. doi: 10.1016/j.colsurfb.2020.111049. Online ahead of print. Colloids Surf B Biointerfaces. 2020. PMID: 32353711
-
Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media.Sci Rep. 2016 Sep 13;6:33266. doi: 10.1038/srep33266. Sci Rep. 2016. PMID: 27619361 Free PMC article.
-
Effect of nonionic surfactants on the solubilization of alachlor.J Hazard Mater. 2006 Aug 25;136(3):882-8. doi: 10.1016/j.jhazmat.2006.01.027. Epub 2006 Mar 2. J Hazard Mater. 2006. PMID: 16515834
-
Solubilization of Hydrophobic Dyes in Surfactant Solutions.Materials (Basel). 2013 Feb 21;6(2):580-608. doi: 10.3390/ma6020580. Materials (Basel). 2013. PMID: 28809328 Free PMC article. Review.
Cited by
-
Aggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.New J Chem. 2016 Mar 1;40(3):2028-2035. doi: 10.1039/C5NJ02108A. Epub 2015 Dec 7. New J Chem. 2016. PMID: 27547030 Free PMC article.
-
One-Step Synthesis of Amphiphilic Nonylphenol Polyethyleneimine for Demulsification of Water in Heavy Crude Oil Emulsions.ACS Omega. 2020 Apr 16;5(16):9212-9223. doi: 10.1021/acsomega.0c00002. eCollection 2020 Apr 28. ACS Omega. 2020. PMID: 32363273 Free PMC article.
-
Total synthesis, isolation, surfactant properties, and biological evaluation of ananatosides and related macrodilactone-containing rhamnolipids.Chem Sci. 2021 May 4;12(21):7533-7546. doi: 10.1039/d1sc01146d. Chem Sci. 2021. PMID: 34163844 Free PMC article.
-
4D printing of polymeric materials for tissue and organ regeneration.Mater Today (Kidlington). 2017 Dec;20(10):577-591. doi: 10.1016/j.mattod.2017.06.005. Epub 2017 Jul 8. Mater Today (Kidlington). 2017. PMID: 29403328 Free PMC article.
-
Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.Environ Sci Technol. 2021 Mar 16;55(6):3706-3715. doi: 10.1021/acs.est.0c07355. Epub 2021 Mar 5. Environ Sci Technol. 2021. PMID: 33666425 Free PMC article.
References
-
- Abriola LM, Drummond CD, Hahn EJ, Hayes KF, Kibbey TCG, Lemke LD, Pennell KD, Petrovskis EA, Ramsburg CA, Rathfelder KM. Environ. Sci. Technol. 2005;39:1778–1790. - PubMed
-
- Childs J, Acosta E, Annable MD, Brooks MC, Enfield CG, Harwell JH, Hasegawa M, Knox RC, Rao PS, Sabatini DA, Shiau B, Szekeres E, Wood AL. J. Contam. Hydrol. 2006;82:1–22. - PubMed
-
- Masrat R, Maswal M, Dar AA. J. Hazard. Mater. 2013;244:662–670. - PubMed
-
- Pennell KD, Abriola LM, Weber WJ., Jr Environ. Sci. Technol. 1993;27:2332–2340.
-
- Kile DE, Chiou CT. Environ. Sci. Technol. 1989;23:832–838.
Grants and funding
LinkOut - more resources
Full Text Sources