Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 Feb 9:5:27.
doi: 10.1186/s13643-016-0197-5.

A comparison of the performance of seven key bibliographic databases in identifying all relevant systematic reviews of interventions for hypertension

Affiliations
Comparative Study

A comparison of the performance of seven key bibliographic databases in identifying all relevant systematic reviews of interventions for hypertension

John Rathbone et al. Syst Rev. .

Abstract

Background: Bibliographic databases are the primary resource for identifying systematic reviews of health care interventions. Reliable retrieval of systematic reviews depends on the scope of indexing used by database providers. Therefore, searching one database may be insufficient, but it is unclear how many need to be searched. We sought to evaluate the performance of seven major bibliographic databases for the identification of systematic reviews for hypertension.

Methods: We searched seven databases (Cochrane library, Database of Abstracts of Reviews of Effects (DARE), Excerpta Medica Database (EMBASE), Epistemonikos, Medical Literature Analysis and Retrieval System Online (MEDLINE), PubMed Health and Turning Research Into Practice (TRIP)) from 2003 to 2015 for systematic reviews of any intervention for hypertension. Citations retrieved were screened for relevance, coded and checked for screening consistency using a fuzzy text matching query. The performance of each database was assessed by calculating its sensitivity, precision, the number of missed reviews and the number of unique records retrieved.

Results: Four hundred systematic reviews were identified for inclusion from 11,381 citations retrieved from seven databases. No single database identified all the retrieved systematic reviews for hypertension. EMBASE identified the most reviews (sensitivity 69 %) but also retrieved the most irrelevant citations with 7.2 % precision (Pr). The sensitivity of the Cochrane library was 60 %, DARE 57 %, MEDLINE 57 %, PubMed Health 53 %, Epistemonikos 49 % and TRIP 33 %. EMBASE contained the highest number of unique records (n = 43). The Cochrane library identified seven unique records and had the highest precision (Pr = 30 %), followed by Epistemonikos (n = 2, Pr = 19 %). No unique records were found in PubMed Health (Pr = 24 %) DARE (Pr = 21 %), TRIP (Pr = 10 %) or MEDLINE (Pr = 10 %). Searching EMBASE and the Cochrane library identified 88 % of all systematic reviews in the reference set, and searching the freely available databases (Cochrane, Epistemonikos, MEDLINE) identified 83 % of all the reviews. The databases were re-analysed after systematic reviews of non-conventional interventions (e.g. yoga, acupuncture) were removed. Similarly, no database identified all the retrieved systematic reviews. EMBASE identified the most relevant systematic reviews (sensitivity 73 %) but also retrieved the most irrelevant citations with Pr = 5 %. The sensitivity of the Cochrane database was 62 %, followed by MEDLINE (60 %), DARE (55 %), PubMed Health (54 %), Epistemonikos (50 %) and TRIP (31 %). The precision of the Cochrane library was the highest (20 %), followed by PubMed Health (Pr = 16 %), DARE (Pr = 13 %), Epistemonikos (Pr = 12 %), MEDLINE (Pr = 6 %), TRIP (Pr = 6 %) and EMBASE (Pr = 5 %). EMBASE contained the most unique records (n = 34). The Cochrane library identified seven unique records. The other databases held no unique records.

Conclusions: The coverage of bibliographic databases varies considerably due to differences in their scope and content. Researchers wishing to identify systematic reviews should not rely on one database but search multiple databases.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Search strategies
Fig. 2
Fig. 2
Proportion of reference set (n = 400) retrieved by searching EMBASE and the Cochrane library, resulting in the identification of 88 % (n = 352) of total reviews
Fig. 3
Fig. 3
Proportion of reference set (n = 400) retrieved by searching Cochrane, Epistemonikos and MEDLINE, resulting in the identification of 83 % (n = 330) of total reviews

Similar articles

Cited by

References

    1. Oxford Centre for Evidence-Based Medicine—levels of evidence [http://www.cebm.net/oxford-centre-evidence-based-medicine-levels-evidenc...] Accessed 23-01-2015.
    1. Shariff SZ, Bejaimal SA, Sontrop JM, Iansavichus AV, Haynes RB, Weir MAGA. Retrieving clinical evidence: a comparison of PubMed and Google Scholar for quick clinical searches. J Med Internet Res. 2013;15:e164. doi: 10.2196/jmir.2624. - DOI - PMC - PubMed
    1. Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? PLoS Med. 2010;7:e1000326. doi: 10.1371/journal.pmed.1000326. - DOI - PMC - PubMed
    1. Hoffmann T, Erueti C, Thorning S, Glasziou P. The scatter of research: cross sectional comparison of randomised trials and systematic reviews across specialties. BMJ. 2012;344:e3223. doi: 10.1136/bmj.e3223. - DOI - PMC - PubMed
    1. Ely J, Osheroff J, Ebell M, Chambliss M, Vinson D, Stevermer J, et al. Obstacles to answering doctors’ questions about patient care with evidence: qualitative study. BMJ. 2002;324:710. doi: 10.1136/bmj.324.7339.710. - DOI - PMC - PubMed

Publication types