Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 22;6(5):37.
doi: 10.1186/gm554. eCollection 2014.

Copy number variants are a common cause of non-syndromic hearing loss

Affiliations

Copy number variants are a common cause of non-syndromic hearing loss

A Eliot Shearer et al. Genome Med. .

Abstract

Background: Copy number variants (CNVs) are a well-recognized cause of genetic disease; however, methods for their identification are often gene-specific, excluded as 'routine' in screens of genetically heterogeneous disorders, and not implemented in most next-generation sequencing pipelines. For this reason, the contribution of CNVs to non-syndromic hearing loss (NSHL) is most likely under-recognized. We aimed to incorporate a method for CNV identification as part of our standard analysis pipeline and to determine the contribution of CNVs to genetic hearing loss.

Methods: We used targeted genomic enrichment and massively parallel sequencing to isolate and sequence all exons of all genes known to cause NSHL. We completed testing on 686 patients with hearing loss with no exclusions based on type of hearing loss or any other clinical features. For analysis we used an integrated method for detection of single nucleotide changes, indels and CNVs. CNVs were identified using a previously published method that utilizes median read-depth ratios and a sliding-window approach.

Results: Of 686 patients tested, 15.2% (104) carried at least one CNV within a known deafness gene. Of the 38.9% (267) of individuals for whom we were able to determine a genetic cause of hearing loss, a CNV was implicated in 18.7% (50). We identified CNVs in 16 different genes including 7 genes for which no CNVs have been previously reported. CNVs of STRC were most common (73% of CNVs identified) followed by CNVs of OTOA (13% of CNVs identified).

Conclusion: CNVs are an important cause of NSHL and their detection must be included in comprehensive genetic testing for hearing loss.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A biallelic gene-pseudogene conversion of STRC is the causative mutation in patient 45. (a) Ratio plots showing apparent homozygous deletion of first 11 exons of STRC and duplication of first 11 exons of ψSTRC. (b) Hypothesized mechanism of gene-pseudo-gene conversion (non-allelic gene conversion in trans) and depiction of the biallelic change in the patient.
Figure 2
Figure 2
Ratio depth-of-coverage plot showing homozygous deletion of OTOA as the causative mutation in patient 14. The last 10 exons appear to be only heterozygous deletion, but this is an artifact due to segmental duplication of these exons (see text for details).
Figure 3
Figure 3
A two-exon deletion of TMC1 is responsible for deafness in patient 100. (a) Ratio depth-of-coverage plot showing a two-exon heterozygous deletion. This deletion was found in trans with a missense change predicted to be pathogenic (c.1276G > A, p.Ala426Thr). (b) Highlighted region from UCSC genome browser RepeatMasker track demonstrates multiple short interspersed elements (SINEs; primarily Alu repeats), long interspersed elements (LINEs; including L1 repeats), and long terminal repeats (LTR) in this region. The two deleted exons are marked with asterisks. The hypothesized mechanism for this deletion involves these repeat elements and NAHR.

Similar articles

Cited by

References

    1. Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451–481. doi: 10.1146/annurev.genom.9.081307.164217. - DOI - PMC - PubMed
    1. Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. PathoGenetics. 2008;1:4. doi: 10.1186/1755-8417-1-4. - DOI - PMC - PubMed
    1. Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Coooper DN. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133:1–9. doi: 10.1007/s00439-013-1358-4. - DOI - PMC - PubMed
    1. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–455. doi: 10.1146/annurev-med-100708-204735. - DOI - PubMed
    1. Verpy E, Masmoudi S, Zwaenepoel I, Leibovici M, Hutchin TP, del Castillo I, Nouaille S, Blanchard S, Lainé S, Popot JL, Moreno F, Mueller RF, Petit C. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat Genet. 2001;29:345–349. doi: 10.1038/ng726. - DOI - PubMed