Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2012;57(2):314-21.
doi: 10.2478/v10039-012-0036-4.

Evidence that FGFR1 loss-of-function mutations may cause variable skeletal malformations in patients with Kallmann syndrome

Affiliations
Case Reports

Evidence that FGFR1 loss-of-function mutations may cause variable skeletal malformations in patients with Kallmann syndrome

K Jarzabek et al. Adv Med Sci. 2012.

Abstract

Purpose: Loss-of-function mutations in FGFR1 have been identified in approximately 10% of the Kallmann syndrome (KS) patients. Previous reports have focused mainly on olfactory, reproductive, and some other features such as cleft lip/palate and dental agenesis. Given the ubiquitous expression of FGFR1 during development, other abnormal phenotypes might, however, have been overlooked in these patients. Here, we demonstrate skeletal phenotypic characterization of patients presented with KS and FGFR1 mutations.

Material and methods: Using the Sanger DNA sequencing technique a cohort of 29 KS patients was screened.

Results: Here, we report on 5 KS patients who carry FGFR1 mutations (Gly270Asp, Gly97Ser, Met161Thr, Ser685Phe and Ala167Ser/Ala167Ser). Three patients presented with skeletal abnormalities, i.e. spine (hemivertebra and butterfly vertebra) and limb (oligodactyly of the feet, fusion of the 4th and 5th metacarpal bones) malformations in two patients and one patient, respectively. The hand phenotype found in the patient cannot be thought of as a counter-type of the hand phenotype resulting from FGFR1 gain-of-function mutations. The skeletal anomalies identified in the 3 KS patients are close to those observed in Fgfr1 conditional knockout mice.

Conclusions: This study demonstrates that FGFR1 loss-of-function mutations can be associated with skeletal abnormalities also in humans. Further investigations in KS patients who carry FGFR1 mutations are needed to evaluate the prevalence of skeletal defects in this genetic form of KS. Conversely, the presence of bone malformations in a KS patient should direct the geneticist towards a search for mutations in FGFR1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources