Spinocerebellar Ataxia Type 28
- PMID: 21595125
- Bookshelf ID: NBK54582
Spinocerebellar Ataxia Type 28
Excerpt
Clinical characteristics: Spinocerebellar ataxia type 28 (SCA28) is characterized by young-adult onset, very slowly progressive gait and limb ataxia resulting in coordination and balance problems, dysarthria, ptosis, nystagmus, and ophthalmoparesis. In most individuals, SCA28 presents as a loss of coordination of lower limbs (unsteadiness, gait ataxia). Less frequently, ptosis/ophthalmoplegia, dysarthria, or upper-limb incoordination may occur as the initial finding. The course of the disease is slowly progressive without impairment of functional autonomy even decades after onset.
Diagnosis/testing: Because the phenotype of SCA28 is indistinguishable from many other inherited disorders with SCA, the diagnosis of SCA28 is established in a proband with typical clinical findings by the identification of a heterozygous pathogenic variant in AFG3L2 by molecular genetic testing.
Management: Treatment of manifestations: Ambulatory aids (crutches, canes, walkers); home adaptations as needed; physical therapy to help with tasks such as eating, dressing, walking, and bathing; stretching exercise for those with pyramidal involvement to avoid contractions and lack of comfort during sleep. Speech/ language therapy is helpful for those with dysarthria and swallowing difficulties as is surgery for severe ptosis.
Prevention of secondary complications: Psychological support; weight control to facilitate ambulation; thickened feeds or gastrostomy feedings to avoid aspiration pneumonia.
Surveillance: Annual assessment to evaluate stability or progression of the cerebellar ataxia. Monitoring of speech and swallowing.
Agents/circumstances to avoid: Alcohol consumption and sedatives such as benzodiazepines that may worsen gait ataxia and coordination.
Genetic counseling: SCA28 is inherited in an autosomal dominant manner. Most individuals diagnosed with SCA28 have an affected parent; the proportion of cases caused by de novo pathogenic variants is unknown. Each child of an individual with SCA28 has a 50% risk of inheriting the pathogenic variant. Prenatal and preimplantation genetic testing are possible if the pathogenic variant in the family has been identified.
Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.
Sections
Similar articles
-
ATP1A3-Related Disorder.2008 Feb 7 [updated 2024 Dec 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2008 Feb 7 [updated 2024 Dec 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301294 Free Books & Documents. Review.
-
Single Large-Scale Mitochondrial DNA Deletion Syndromes.2003 Dec 17 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2003 Dec 17 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301382 Free Books & Documents. Review.
-
Spinocerebellar Ataxia Type 38.2019 Jul 11. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2019 Jul 11. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 31294938 Free Books & Documents. Review.
-
Phelan-McDermid Syndrome-SHANK3 Related.2005 May 11 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2005 May 11 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301377 Free Books & Documents. Review.
-
Ataxia-Telangiectasia.1999 Mar 19 [updated 2023 Oct 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 1999 Mar 19 [updated 2023 Oct 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301790 Free Books & Documents. Review.
References
-
- Arlt H, Tauer R, Feldmann H, Neupert W, Langer T. The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell. 1996;85:875–85. - PubMed
-
- Banfi S, Bassi MT, Andolfi G, Marchitiello A, Zanotta S, Ballabio A, Casari G, Franco B. Identification and characterization of AFG3L2, a novel paraplegin-related gene. Genomics. 1999;59:51–8. - PubMed
-
- Cagnoli C, Stevanin G, Brussino A, Barberis M, Mancini C, Margolis RL, Holmes SE, Nobili M, Forlani S, Padovan S, Pappi P, Zaros C, Leber I, Ribai P, Pugliese L, Assalto C, Brice A, Migone N, Dürr A, Brusco A. Missense mutations in the AFG3L2 proteolytic domain account for ~1.5% of European autosomal dominant cerebellar ataxias. Hum Mutat. 2010;31:1117–24. - PubMed
-
- Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P, De Michele G, Filla A, Cocozza S, Marconi R, Dürr A, Fontaine B, Ballabio A. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell. 1998;93:973–83. - PubMed
Publication types
LinkOut - more resources
Full Text Sources