Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov-Dec;3(11-12):752-62.
doi: 10.1242/dmm.004689. Epub 2010 Sep 27.

The ZFHX3 (ATBF1) transcription factor induces PDGFRB, which activates ATM in the cytoplasm to protect cerebellar neurons from oxidative stress

Affiliations
Free article

The ZFHX3 (ATBF1) transcription factor induces PDGFRB, which activates ATM in the cytoplasm to protect cerebellar neurons from oxidative stress

Tae-Sun Kim et al. Dis Model Mech. 2010 Nov-Dec.
Free article

Abstract

Ataxia telangiectasia (A-T) is a neurodegenerative disease caused by mutations in the large serine-threonine kinase ATM. A-T patients suffer from degeneration of the cerebellum and show abnormal elevation of serum alpha-fetoprotein. Here, we report a novel signaling pathway that links ATM via cAMP-responsive-element-binding protein (CREB) to the transcription factor ZFHX3 (also known as ATBF1), which in turn promotes survival of neurons by inducing expression of platelet-derived growth factor receptor β (PDGFRB). Notably, AG1433, an inhibitor of PDGFRB, suppressed the activation of ATM under oxidative stress, whereas AG1433 did not inhibit the response of ATM to genotoxic stress by X-ray irradiation. Thus, the activity of a membrane-bound tyrosine kinase is required to trigger the activation of ATM in oxidative stress, independent of the response to genotoxic stress. Kainic acid stimulation induced activation of ATM in the cerebral cortex, hippocampus and deep cerebellar nuclei (DCN), predominately in the cytoplasm in the absence of induction of γ-H2AX (a marker of DNA double-strand breaks). The activation of ATM in the cytoplasm might play a role in autophagy in protection of neurons against oxidative stress. It is important to consider DCN of the cerebellum in the etiology of A-T, because these neurons are directly innervated by Purkinje cells, which are progressively lost in A-T.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms