Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Very Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

Very Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency

Nancy D Leslie et al.
Free Books & Documents

Excerpt

Clinical characteristics: Deficiency of very long-chain acyl-coenzyme A dehydrogenase (VLCAD), which catalyzes the initial step of mitochondrial beta-oxidation of long-chain fatty acids with a chain length of 14 to 20 carbons, is associated with three phenotypes. The severe early-onset cardiac and multiorgan failure form typically presents in the first months of life with hypertrophic or dilated cardiomyopathy, pericardial effusion, and arrhythmias, as well as hypotonia, hepatomegaly, and intermittent hypoglycemia. The hepatic or hypoketotic hypoglycemic form typically presents during early childhood with hypoketotic hypoglycemia and hepatomegaly, but without cardiomyopathy. The later-onset episodic myopathic form presents with intermittent rhabdomyolysis provoked by exercise, muscle cramps and/or pain, and/or exercise intolerance. Hypoglycemia typically is not present at the time of symptoms.

Diagnosis/testing: The diagnosis of VLCAD deficiency is established in a proband with a specific pattern of abnormal acylcarnitine levels on biochemical testing and/or by identification of biallelic pathogenic variants in ACADVL on molecular genetic testing. If one ACADVL pathogenic variant is found and suspicion of VLCAD deficiency is high, specialized biochemical testing using cultured fibroblasts or lymphocytes may be needed for confirmation of the diagnosis.

Management: Treatment of manifestations:

  1. Routine daily treatment. Low-fat formula or low long-chain fat / high medium-chain triglyceride (MCT) medical food, with 13%-39% of calories as total fat; total dietary protein above the dietary reference intake for age; MCT oil or triheptanoin supplementation; carnitine supplementation; consider supplementation with linoleic acid, arachidonic acid, alpha-linolenic acid, and docosahexaenoic acid; frequent feeding in infants and a bedtime snack high in complex carbohydrates in children and adults; nasogastric tube feeding for those with feeding issues; guided exercise and avoidance of severe exercise to address exercise intolerance in older individuals; standard treatment of cardiomyopathy; supportive developmental therapies as needed.

  2. Emergency outpatient treatment. Consider a trial outpatient treatment at home for up to 12 hours, including frequent high carbohydrate feedings, reduced fasting duration time, antipyretics, and antiemetics.

  3. Acute inpatient treatment. Administration of high-energy fluids (≥10% IV dextrose) with electrolytes at a rate of at least 1.5 times maintenance (minimum of 8 mg/kg/min of glucose) while avoiding the use of L-carnitine and IV lipids; standard treatment for cardiomyopathy / cardiac failure; ample hydration and alkalization of the urine for those with rhabdomyolysis.

Prevention of secondary complications: Acute rhabdomyolysis is treated with ample hydration and alkalization of the urine to protect kidney function and to prevent acute kidney failure secondary to myoglobinuria; if a surgery or procedure is required, notify designated metabolic center in advance of the procedure to discuss perioperative management with surgeons and anesthesiologists; some anesthetics may be contraindicated.

Surveillance: Measurement of growth parameters (including head circumference) and assessment of feeding skills (in infants/toddlers) at each visit; plasma carnitine panel, acylcarnitine profile, and creatine kinase level every three months for the first year of life, every three to six months for those between age one and seven years, and every six to 12 months for those older than age seven years; red blood cell or plasma essential fatty acids every six months for those on long-chain fat restriction; measurement of vitamins A, D, and E annually or as clinically indicated for those on long-chain fat restriction; echocardiogram at least annually or as clinically indicated; DXA scan every five years in adults; measurement of complete blood count, ferritin level, comprehensive metabolic panel, troponin, and B-type natriuretic protein as clinically indicated.

Agents/circumstances to avoid: Fasting; myocardial irritation; dehydration; high-fat diet; and volatile anesthetics and anesthetics that contain high doses of long-chain fatty acids such as propofol and etomidate.

Evaluation of relatives at risk: Evaluation of all at-risk sibs of any age is warranted to identify those who would benefit from treatment and preventive measures.

Pregnancy management: Labor and postpartum periods are catabolic states and place the mother at higher risk for rhabdomyolysis and subsequent myoglobinuria. A management plan for labor and delivery is necessary for the affected pregnant woman. In addition to regular assessment by a cardiologist and maternal fetal medicine specialist, the following are recommended: visit with a nutritionist familiar with VLCAD deficiency monthly or at least in each trimester; measurement of plasma carnitine panel (total, free, esters) and creatine kinase level at each visit; plasma acylcarnitine profile weekly to monthly; red blood cell or plasma essential fatty acids (for those on long-chain fat restriction) at least once during pregnancy; echocardiogram either prior to conception or as soon as a pregnancy is recognized; measurement of vitamins A, D, and E (for those on long-chain fat restriction), complete blood count, ferritin level, and metabolic panel as a baseline or as clinically indicated.

Genetic counseling: VLCAD deficiency is inherited in an autosomal recessive manner. If both parents are known to be heterozygous for an ACADVL pathogenic variant, each sib of an affected individual has at conception a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of inheriting neither of the familial pathogenic variants. Molecular genetic carrier testing for at-risk relatives and prenatal and preimplantation genetic testing are possible if the pathogenic variants in the family are known.

PubMed Disclaimer

Similar articles

  • Carnitine-Acylcarnitine Translocase Deficiency.
    Morales Corado JA, Lee CU, Enns GM. Morales Corado JA, et al. 2022 Jul 21. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2022 Jul 21. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 35862567 Free Books & Documents. Review.
  • Long-Chain Hydroxyacyl-CoA Dehydrogenase Deficiency / Trifunctional Protein Deficiency.
    Prasun P, LoPiccolo MK, Ginevic I. Prasun P, et al. 2022 Sep 1. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2022 Sep 1. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 36063482 Free Books & Documents. Review.
  • Multiple Acyl-CoA Dehydrogenase Deficiency.
    Prasun P. Prasun P. 2020 Jun 18. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2020 Jun 18. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 32550677 Free Books & Documents. Review.
  • Dihydrolipoamide Dehydrogenase Deficiency.
    Quinonez SC, Thoene JG. Quinonez SC, et al. 2014 Jul 17 [updated 2021 Sep 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2014 Jul 17 [updated 2021 Sep 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 25032271 Free Books & Documents. Review.
  • Citrullinemia Type I.
    Quinonez SC, Lee KN. Quinonez SC, et al. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301631 Free Books & Documents. Review.

References

    1. Andresen BS, Olpin S, Poorthuis B, Scholte H, Vianey-Saban C, Wanders R, Ijlst L, Morris A, Pourfarzam M, Bartlett K, Baumgartner R, deKlerk J, Schroeder L, Corydon T, Lund H, Winter V, Bross P, Bolund L, Gregersen N (1999) Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet 64:479-94 - PMC - PubMed
    1. Arnold GL, Van Hove J, Freedenberg D, Strauss A, Longo N, Burton B, Garganta C, Ficicioglu C, Cederbaum S, Harding C, Boles RG, Matern D, Chakraborty P, Feigenbaum A (2009) A Delphi clinical practice protocol for the management of very long chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 96:85-90. - PMC - PubMed
    1. Baruteau J, Sachs P, Broué P, Brivet M, Abdoul H, Vianey-Saban C, Ogier de Baulny H. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis. 2013;36:795-803. - PubMed
    1. Behrend AM, Harding CO, Shoemaker JD, Martern D, Sahn DJ, Elliot DL, Gillingham MB (2012) Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation. Mol Genet Metab 105:110-5. - PMC - PubMed
    1. Bleeker JC, Kok IL, Ferdinandusse S, van der Pol WL, Cuppen I, Bosch AM, Langeveld M, Derks TGJ, Williams M, de Vries M, Mulder MF, Gozalbo ER, de Sain-van der Velden MGM, Rennings AJ, Schielen PJCI, Dekkers E, Houtkooper RH, Waterham HR, Pras-Raves ML, Wanders RJA, van Hasselt PM, Schoenmakers M, Wijburg FA, Visser G. Impact of newborn screening for very-long-chain acyl-CoA dehydrogenase deficiency on genetic, enzymatic, and clinical outcomes. J Inherit Metab Dis. 2019;42:414-23. - PubMed

LinkOut - more resources