Familial Hemophagocytic Lymphohistiocytosis
- PMID: 20301617
- Bookshelf ID: NBK1444
Familial Hemophagocytic Lymphohistiocytosis
Excerpt
Clinical characteristics: Familial hemophagocytic lymphohistiocytosis (fHLH), defined as the presence of biallelic pathogenic variants in one of four genes (PRF1, STX11, STXBP2, or UNC13D), is an immune deficiency characterized by the overactivation and excessive proliferation of T lymphocytes and macrophages, leading to infiltration and damage of organs including the bone marrow, liver, spleen, and brain. Familial HLH usually presents as an acute illness with prolonged and high fever, cytopenias, and hepatosplenomegaly. Rash and lymphadenopathy are less common. Individuals with fHLH may also exhibit liver dysfunction and neurologic abnormalities. Although manifestations of fHLH are usually evident within the first months or years of life and may develop in utero, symptomatic presentation can occur throughout childhood and into adulthood. Median survival in untreated infants with fHLH who develop active disease is less than two months after onset of manifestations; progressive manifestations of fHLH, organ dysfunction, invasive infection, and bleeding account for the majority of deaths. However, the use of newer chemoimmunotherapy protocols followed by allogeneic hematopoietic stem cell transplantation (HSCT) has improved survival.
Diagnosis/testing: The diagnosis of fHLH is established in a proband with suggestive findings by identification of either biallelic pathogenic variants in one of four genes (PRF1, STX11, STXBP2, or UNC13D) or (rarely) a gain-of-function heterozygous variant in STXBP2.
Management: Targeted therapies: Treatment regimens focus on use of chemoimmunotherapy to treat active disease followed by allogeneic HSCT, the only curative therapy. Etoposide-containing regimens such as HLH-94 and HLH-2004, followed by allogeneic HSCT, are typically used. A regimen that includes anti-interferon-gamma antibody (emapalumab) is FDA approved for the treatment of children and adults with relapsed or refractory HLH or intolerance of conventional therapies.
Supportive care: Management should be coordinated by or in consultation with a multidisciplinary team with expertise in fHLH, including specialists in hematology/oncology, bone marrow and stem cell transplantation, immunology, rheumatology, infectious diseases, critical care, neurology, nephrology, pathology, and medical genetics. Supportive care that should accompany treatment with chemoimmunotherapy and allogenic HSCT includes antibiotics or antiviral agents to treat or prevent infections, and antipyretics, intravenous fluids, electrolyte replacement, transfusion of packed red blood cells and platelets, infusions of immunoglobulin, fresh frozen plasma, and/or cryoprecipitate.
Surveillance: Individuals responding to treatment and HSCT are technically not at risk for other organ system involvement; thus, surveillance focuses on potential complications of fHLH while fHLH is active, such as bleeding, hypotension, respiratory distress, neurologic complications, malnutrition, infection, liver, or other organ failure.
Agents/circumstances to avoid: Live vaccines; exposure to infections; acetaminophen in persons with liver failure; nonsteroidal anti-inflammatory drugs in persons with thrombocytopenia; areas of construction or soil manipulation (which increase the risk for fungal infection in individuals with neutropenia); transfusion of non-irradiated blood products in individuals undergoing chemoimmunotherapy and/or allogeneic HSCT.
Evaluation of relatives at risk: It is appropriate to identify – before symptoms occur –those at-risk sibs who have the family-specific pathogenic variants so that they can be monitored and preemptive HSCT considered (particularly during febrile episodes) for development of manifestations of active disease. Any manifestations of possible active disease should prompt more detailed evaluation and referral to a clinician with expertise in fHLH.
Genetic counseling: Familial HLH is inherited in an autosomal recessive manner. (Autosomal dominant inheritance of STXBP2-fHLH is suggested by rare reports of symptomatic individuals with heterozygous gain-of-function variants. Autosomal dominant inheritance will not be discussed further in this section.)
If both parents are known to be heterozygous for an fHLH-causing pathogenic variant, each sib of an affected individual has a 25% chance of inheriting biallelic pathogenic variants, a 50% chance of inheriting one pathogenic variant and being an asymptomatic carrier, and a 25% chance of inheriting neither of the familial fHLH-causing pathogenic variants. Once the fHLH-causing pathogenic variants have been identified in an affected family member, carrier testing for at-risk relatives and prenatal and preimplantation genetic testing are possible.
Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.
Sections
Similar articles
-
Adenosine Deaminase Deficiency.2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301656 Free Books & Documents. Review.
-
X-Linked Lymphoproliferative Disease.2004 Feb 27 [updated 2024 May 16]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Feb 27 [updated 2024 May 16]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301580 Free Books & Documents. Review.
-
Ataxia-Telangiectasia.1999 Mar 19 [updated 2023 Oct 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 1999 Mar 19 [updated 2023 Oct 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301790 Free Books & Documents. Review.
-
Hemophilia B.2000 Oct 2 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2000 Oct 2 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301668 Free Books & Documents. Review.
-
Von Willebrand Disease.2009 Jun 4 [updated 2024 Nov 14]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2009 Jun 4 [updated 2024 Nov 14]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301765 Free Books & Documents. Review.
References
-
- Allen CE, Marsh R, Dawson P, Bollard CM, Shenoy S, Roehrs P, Hanna R, Burroughs L, Kean L, Talano JA, Schultz KR, Pai SY, Baker KS, Andolina JR, Stenger EO, Connelly J, Ramirez A, Bryant C, Eapen M, Pulsipher MA. Reduced-intensity conditioning for hematopoietic cell transplant for HLH and primary immune deficiencies. Blood. 2018;132:1438-51. - PMC - PubMed
-
- Allen CE, Yu X, Kozinetz CA, McClain KL. Highly elevated ferritin levels and the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2008;50:1227-35. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Medical