Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Spastic Paraplegia 4

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

Spastic Paraplegia 4

Livia Parodi et al.
Free Books & Documents

Excerpt

Clinical characteristics: Spastic paraplegia 4 (SPG4; also known as SPAST-HSP) is characterized by insidiously progressive bilateral lower-limb gait spasticity. More than 50% of affected individuals have some weakness in the legs and impaired vibration sense at the ankles. Sphincter disturbances are very common. Onset is insidious, mostly in young adulthood, although symptoms may start as early as age one year and as late as age 76 years. Intrafamilial variation is considerable.

Diagnosis/testing: The diagnosis of SPAST-HSP is established in a proband with characteristic clinical features and a heterozygous pathogenic variant in SPAST identified by molecular genetic testing.

Management: Treatment of manifestations: Antispastic drugs for leg spasticity; anticholinergic antispasmodic drugs for urinary urgency; regular physiotherapy to stretch spastic muscles and prevent contractures. Consideration of botulinum toxin and intrathecal baclofen when oral drugs are ineffective and spasticity is severe and disabling. Urodynamic evaluation in order to initiate treatment when sphincter disturbances become a problem.

Surveillance: Evaluation every 6-12 months to update medications and physical rehabilitation.

Genetic counseling: SPAST-HSP is inherited in an autosomal dominant manner with age-related, nearly complete penetrance and is characterized by significant intrafamilial clinical variability. Most individuals diagnosed with SPAST-HSP have an affected parent. The proportion of cases caused by a de novo pathogenic variant is low. Each child of an individual with SPAST-HSP has a 50% chance of inheriting the pathogenic variant. Prenatal testing and preimplantation genetic testing are possible if a pathogenic SPAST variant has been identified in an affected family member. Because of variable clinical expression, results of prenatal testing cannot be used to predict whether an individual will develop SPAST-HSP and, if so, what the age of onset, clinical course, and degree of disability will be.

PubMed Disclaimer

Similar articles

  • Spastic Paraplegia 3A.
    Hedera P. Hedera P. 2010 Sep 21 [updated 2020 Jun 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2010 Sep 21 [updated 2020 Jun 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20862796 Free Books & Documents. Review.
  • Adenosine Deaminase Deficiency.
    Hershfield M, Tarrant T. Hershfield M, et al. 2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301656 Free Books & Documents. Review.
  • FBN1-Related Marfan Syndrome.
    Dietz H. Dietz H. 2001 Apr 18 [updated 2022 Feb 17]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2001 Apr 18 [updated 2022 Feb 17]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301510 Free Books & Documents. Review.
  • Hemophilia B.
    Konkle BA, Nakaya Fletcher S. Konkle BA, et al. 2000 Oct 2 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2000 Oct 2 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301668 Free Books & Documents. Review.
  • Retinoblastoma.
    Lohmann DR, Gallie BL. Lohmann DR, et al. 2000 Jul 18 [updated 2023 Sep 21]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2000 Jul 18 [updated 2023 Sep 21]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301625 Free Books & Documents. Review.

References

Published Guidelines / Consensus Statements

    1. Committee on Bioethics, Committee on Genetics, and American College of Medical Genetics and Genomics Social, Ethical, Legal Issues Committee. Ethical and policy issues in genetic testing and screening of children. Available online. 2013. Accessed 10-15-21.
    1. National Society of Genetic Counselors. Position statement on genetic testing of minors for adult-onset conditions. Available online. 2018. Accessed 10-15-21.

Literature Cited

    1. Allison R, Lumb JH, Fassier C, Connell JW, Ten Martin D, Seaman MN, Hazan J, Reid E. An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. J Cell Biol. 2013;202:527–43. - PMC - PubMed
    1. Beetz C, Nygren AO, Schickel J, Auer-Grumbach M, Bürk K, Heide G, Kassubek J, Klimpe S, Klopstock T, Kreuz F, Otto S, Schüle R, Schöls L, Sperfeld AD, Witte OW, Deufel T. High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology. 2006;67:1926–30. - PubMed
    1. Braschinsky M, Zopp I, Kals M, Haldre S, Gross-Paju K. Bladder dysfunction in hereditary spastic paraplegia: what to expect? J Neurol Neurosurg Psychiatry. 2010;81:263–6. - PubMed
    1. Bürger J, Fonknechten N, Hoeltzenbein M, Neumann L, Bratanoff E, Hazan J, Reis A. Hereditary spastic paraplegia caused by mutations in the SPG4 gene. Eur J Hum Genet. 2000;8:771–6. - PubMed
    1. Chamard L, Ferreira S, Pijoff A, Silvestre M, Berger E, Magnin E. Cognitive impairment involving social cognition in SPG4 hereditary spastic paraplegia. Behav Neurol. 2016;2016:6423461. - PMC - PubMed

LinkOut - more resources