Smith-Lemli-Opitz Syndrome
- PMID: 20301322
- Bookshelf ID: NBK1143
Smith-Lemli-Opitz Syndrome
Excerpt
Clinical characteristics: Smith-Lemli-Opitz syndrome (SLOS) is a congenital multiple-anomaly / cognitive impairment syndrome caused by an abnormality in cholesterol metabolism resulting from deficiency of the enzyme 7-dehydrocholesterol (7-DHC) reductase. It is characterized by prenatal and postnatal growth restriction, microcephaly, moderate-to-severe intellectual disability, and multiple major and minor malformations. The malformations include distinctive facial features, cleft palate, cardiac defects, underdeveloped external genitalia in males, postaxial polydactyly, and 2-3 syndactyly of the toes. The clinical spectrum is wide; individuals with normal development and only minor malformations have been described.
Diagnosis/testing: The diagnosis of SLOS is established in a proband with suggestive clinical features and elevated 7-dehydrocholesterol level and/or by identification of biallelic pathogenic variants in DHCR7 by molecular genetic testing. Although serum concentration of cholesterol is usually low, it may be in the normal range in approximately 10% of affected individuals, making it an unreliable test for screening and diagnosis.
Management: Treatment of manifestations: While no long-term dietary studies on cholesterol supplementation have been conducted in a randomized fashion, cholesterol supplementation may result in clinical improvement. Early intervention and physical/occupational/speech therapies are indicated for identified disabilities. Consultation with a nutritionist and consideration of hypoallergenic or elemental formulas in infants; gastrostomy as needed for feeding; neonatal cholestatic liver disease often resolves with cholesterol and/or bile acid therapy. A trial of melatonin or another hypnotic may be considered for those with sleep disturbance. Orthotics, tendon release surgery, or Botox® as needed. Proper clothing and sunscreen with UVA and UBV protection for photosensitivity. Routine treatment for gastroesophageal reflux, pyloric stenosis, Hirschsprung disease, constipation, recurrent otitis media, hearing loss, cataracts, ptosis, strabismus, psychiatric disturbance/behavioral issues, seizures, cleft palate, dental anomalies, congenital heart defects, hearing loss, limb defects, and adrenal insufficiency, including stress-related doses of steroids during illness and other physical stress.
Surveillance: Routine health supervision including monitoring of growth parameters, nutritional status, developmental progress, behavior, stooling pattern, changes in tone, seizures (if present), and movement disorders at each visit; monitoring of cholesterol, serum concentration of 7-DHC, and serum amino transferases (ALT and AST) every three to four months in the first few years of life and twice yearly thereafter; screening for vision problems and hearing loss annually in childhood; dental evaluations twice yearly starting at age three years; assessment for signs of puberty and rate of pubertal progression starting at age ten years; monitor for gonadal location and signs/symptoms of urinary tract infection as clinically indicated.
Agents/circumstances to avoid: Treatment with haloperidol or other drugs in the same class. Psychotropic drugs (trazodone, aripirazole) that elevate 7-DHC should be used with caution; extended sun exposure should be avoided.
Evaluation of relatives at risk: Testing of all sibs so that cholesterol supplementation can begin as soon as possible after birth.
Other: For severely affected infants, consider surgical management of congenital anomalies (e.g., cleft palate, congenital heart disease, genital anomalies) as for any other severe, usually lethal disorder.
Genetic counseling: SLOS is inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Carrier detection is possible if the pathogenic variants in the family are known. Prenatal testing for a pregnancy at increased risk is possible using biochemical testing or molecular genetic testing if the pathogenic variants in the family are known.
Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.
Sections
Similar articles
-
Citrullinemia Type I.2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301631 Free Books & Documents. Review.
-
Alpha-Mannosidosis.2001 Oct 11 [updated 2024 Jun 13]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2001 Oct 11 [updated 2024 Jun 13]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301570 Free Books & Documents. Review.
-
Ornithine Transcarbamylase Deficiency.2013 Aug 29 [updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2013 Aug 29 [updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 24006547 Free Books & Documents. Review.
-
Phelan-McDermid Syndrome-SHANK3 Related.2005 May 11 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2005 May 11 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301377 Free Books & Documents. Review.
-
Biotinidase Deficiency.2000 Mar 24 [updated 2023 May 25]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2000 Mar 24 [updated 2023 May 25]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301497 Free Books & Documents. Review.
References
-
- Abuelo DN, Tint GS, Kelley R, Batta AK, Shefer S, Salen G. Prenatal detection of the cholesterol biosynthetic defect in the Smith- Lemli-Opitz syndrome by the analysis of amniotic fluid sterols. Am J Med Genet. 1995;56:281–5. - PubMed
-
- Anstey A. Photomedicine: lessons from the Smith-Lemli-Opitz syndrome. J Photochem Photobiol B. 2001;62:123–7. - PubMed
-
- Aradhya S, Lewis R, Bonaga T, Nwokekeh N, Stafford A, Boggs B, Hruska K, Smaoui N, Compton JG, Richard G, Suchy S. Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders. Genet Med. 2012;14:594–603. - PubMed
-
- Atchaneeyasakul LO, Linck LM, Connor WE, Weleber RG, Steiner RD. Eye findings in 8 children and a spontaneously aborted fetus with RSH/Smith-Lemli-Opitz syndrome. Am J Med Genet. 1998;80:501–5. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous