Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Arylsulfatase A Deficiency

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

Arylsulfatase A Deficiency

Natalia Gomez-Ospina.
Free Books & Documents

Excerpt

Clinical characteristics: Arylsulfatase A deficiency (also known as metachromatic leukodystrophy or MLD) is characterized by three clinical subtypes: late-infantile, juvenile, and adult MLD. The age of onset within a family is usually similar. The disease course may be from several years in the late-infantile-onset form to decades in the juvenile- and adult-onset forms.

Late-infantile MLD: Onset is before age 30 months. Typical presenting findings include weakness, hypotonia, clumsiness, frequent falls, toe walking, and dysarthria. Language, cognitive, and gross and fine motor skills regress as the disease progresses. Later signs include spasticity, pain, seizures, and compromised vision and hearing. In the final stages, children have tonic spasms, decerebrate posturing, and general unawareness of their surroundings.

Juvenile MLD: Onset is between age 30 months and 16 years. Initial manifestations include a decline in school performance and the emergence of behavioral problems, followed by gait disturbances. Progression is similar to but slower than in the late-infantile form.

Adult MLD: Onset occurs after the age of 16 years, sometimes not until the fourth or fifth decade. Initial signs can include problems in school or job performance, personality changes, emotional lability, or psychosis; in others, neurologic symptoms (weakness and loss of coordination progressing to spasticity and incontinence) or seizures predominate initially. Peripheral neuropathy is common. The disease course is variable, with periods of stability interspersed with periods of decline, and may extend over two to three decades. The final stage is similar to earlier-onset forms.

Diagnosis/testing: The diagnosis of MLD is established in a proband with the suggestive findings of progressive neurologic dysfunction, brain MRI evidence of leukodystrophy, or arylsulfatase A enzyme deficiency by identification of biallelic ARSA pathogenic variants on molecular genetic testing, elevated urinary excretion of sulfatides, or – less commonly – metachromatic lipid deposits in nervous system tissue.

Management: Targeted therapy: Allogeneic hematopoietic stem cell transplantation (HSCT) can treat primary central nervous system manifestations in those with pre- and very early-symptomatic juvenile- or adult-onset MLD. Autologous HSCT using gene-modified hematopoietic stem cells (also known as ex vivo gene therapy) is approved in the United States, European Union, and United Kingdom for individuals with presymptomatic late-infantile MLD, presymptomatic early-onset juvenile MLD, or early-symptomatic early-onset juvenile MLD with maintained ability to walk and before the onset of cognitive decline.

Supportive care: Developmental and educational support. Treatment per orthopedist, physical medicine and rehabilitation, and physical and occupational therapists to avoid contractures and falls and maintain neuromuscular function and mobility, muscle relaxants for contractures, and safety measures for gait or movement limitations. Feeding therapy, swallowing aids, suction equipment, and other standard treatments for drooling, swallowing difficulty, and gastroesophageal reflux. Gastrostomy tube as needed for feeding. Treatment of seizures using anti-seizure medications in standard protocols. Standard treatments for impaired vison and/or hearing and respiratory issues. Family support to enable parents and/or caregivers to anticipate decisions on walking aids, wheelchairs, feeding tubes, and other changing care needs.

Surveillance: Brain MRI examination to monitor the status of demyelination using MLD brain MRI severity scoring with frequency per neurologist. Assess motor function and support needs using gross motor function measurement (GMFM). Monitor for disease exacerbations following febrile infections. At each visit, assess physical mobility, self-help skills, development, neurobehavioral and psychiatric issues, growth, nutrition, safety of oral intake, need for feeding support, constipation, respiratory issues, and family needs. Vision and hearing assessment as needed.

Genetic counseling: MLD is inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Carrier testing of at-risk family members and prenatal testing for a pregnancy at increased risk are possible if both ARSA pathogenic variants have been identified in an affected family member.

PubMed Disclaimer

Similar articles

  • Acid Sphingomyelinase Deficiency.
    Wasserstein MP, Schuchman EH. Wasserstein MP, et al. 2006 Dec 7 [updated 2023 Apr 27]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2006 Dec 7 [updated 2023 Apr 27]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301544 Free Books & Documents. Review.
  • Alpha-Mannosidosis.
    Ficicioglu C, Stepien KM. Ficicioglu C, et al. 2001 Oct 11 [updated 2024 Jun 13]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2001 Oct 11 [updated 2024 Jun 13]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301570 Free Books & Documents. Review.
  • Adenosine Deaminase Deficiency.
    Hershfield M, Tarrant T. Hershfield M, et al. 2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301656 Free Books & Documents. Review.
  • Aromatic L-Amino Acid Decarboxylase Deficiency.
    Blau N, Pearson TS, Kurian MA, Elsea SH. Blau N, et al. 2023 Oct 12 [updated 2025 Jan 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2023 Oct 12 [updated 2025 Jan 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 37824694 Free Books & Documents. Review.
  • Citrullinemia Type I.
    Quinonez SC, Lee KN. Quinonez SC, et al. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301631 Free Books & Documents. Review.

References

    1. Ahn H, Seo GH, Keum C, Heo SH, Kim T, Choi J, Yum MS, Lee BH. Diagnosis of metachromatic leukodystrophy in a patient with regression and Phelan-McDermid syndrome. Brain Dev. 2020;42:414-7. - PubMed
    1. Alvarez-Leal M, Contreras-Hernandez D, Chavez A, Diaz-Contreras JA, Careaga-Olivares J, Zuniga-Charles MA, Reynoso MC, Hernandez-Tellez A. Leukocyte arylsulfatase A activity in patients with alcohol-related cirrhosis. Am J Hum Biol. 2001;13:297–300. - PubMed
    1. Amedick LB, Martin P, Beschle J, Strölin M, Wilke M, Wolf N, Pouwels P, Hagberg G, Klose U, Naegele T, Kraegeloh-Mann I, Groeschel S. Clinical significance of diffusion tensor imaging in metachromatic leukodystrophy. Neuropediatrics. 2023;54:244-52. - PMC - PubMed
    1. Arbour LT, Silver K, Hechtman P, Treacy EP, Coulter-Mackie MB. Variable onset of metachromatic leukodystrophy in a Vietnamese family. Pediatr Neurol. 2000;23:173–6. - PubMed
    1. Barrell C. Juvenile metachromatic leukodystrophy: understanding the disease and implications for nursing care. J Pediatr Oncol Nurs. 2007;24:64–9. - PubMed

LinkOut - more resources