Structure of eukaryotic RNA polymerases
- PMID: 18573085
- DOI: 10.1146/annurev.biophys.37.032807.130008
Structure of eukaryotic RNA polymerases
Abstract
The eukaryotic RNA polymerases Pol I, Pol II, and Pol III are the central multiprotein machines that synthesize ribosomal, messenger, and transfer RNA, respectively. Here we provide a catalog of available structural information for these three enzymes. Most structural data have been accumulated for Pol II and its functional complexes. These studies have provided insights into many aspects of the transcription mechanism, including initiation at promoter DNA, elongation of the mRNA chain, tunability of the polymerase active site, which supports RNA synthesis and cleavage, and the response of Pol II to DNA lesions. Detailed structural studies of Pol I and Pol III were reported recently and showed that the active center region and core enzymes are similar to Pol II and that strong structural differences on the surfaces account for gene class-specific functions.
Similar articles
-
Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II.Annu Rev Biophys. 2018 May 20;47:425-446. doi: 10.1146/annurev-biophys-070317-033058. Annu Rev Biophys. 2018. PMID: 29792819 Review.
-
Influence of secondary structure on recovery from pauses during early stages of RNA transcription.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):030904. doi: 10.1103/PhysRevE.81.030904. Epub 2010 Mar 18. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 20365690
-
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases.Nat Rev Mol Cell Biol. 2022 Sep;23(9):603-622. doi: 10.1038/s41580-022-00476-9. Epub 2022 May 3. Nat Rev Mol Cell Biol. 2022. PMID: 35505252 Review.
-
RNA folding during transcription.Annu Rev Biophys Biomol Struct. 2006;35:161-75. doi: 10.1146/annurev.biophys.35.040405.102053. Annu Rev Biophys Biomol Struct. 2006. PMID: 16689632 Review.
-
Functional divergence of eukaryotic RNA polymerases: unique properties of RNA polymerase I suit its cellular role.Gene. 2015 Feb 1;556(1):19-26. doi: 10.1016/j.gene.2014.10.035. Epub 2014 Oct 24. Gene. 2015. PMID: 25445273 Free PMC article. Review.
Cited by
-
Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code.RNA Biol. 2012 Sep;9(9):1144-6. doi: 10.4161/rna.21726. Epub 2012 Sep 1. RNA Biol. 2012. PMID: 22960391 Free PMC article. Review.
-
Coupling pre-mRNA processing to transcription on the RNA factory assembly line.RNA Biol. 2013 Mar;10(3):380-90. doi: 10.4161/rna.23697. Epub 2013 Feb 7. RNA Biol. 2013. PMID: 23392244 Free PMC article. Review.
-
Transfer RNAs: diversity in form and function.RNA Biol. 2021 Mar;18(3):316-339. doi: 10.1080/15476286.2020.1809197. Epub 2020 Sep 9. RNA Biol. 2021. PMID: 32900285 Free PMC article. Review.
-
The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening.J Biol Chem. 2010 Jan 22;285(4):2695-706. doi: 10.1074/jbc.M109.074013. Epub 2009 Nov 24. J Biol Chem. 2010. PMID: 19940126 Free PMC article.
-
Integrative structure modeling of macromolecular assemblies from proteomics data.Mol Cell Proteomics. 2010 Aug;9(8):1689-702. doi: 10.1074/mcp.R110.000067. Epub 2010 May 27. Mol Cell Proteomics. 2010. PMID: 20507923 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases