Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles
- PMID: 10403044
- DOI: 10.1016/s0142-9612(99)00021-6
Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles
Abstract
The in vitro protein-rejecting properties of PEG-coated polyalkylcyanoacrylate (PACA) nanoparticles were for the first time visualized after freeze-fracture of the nanoparticles pre-incubated with fibrinogen as a model blood protein. The reduced protein association to the nanoparticles was evidenced also by two-dimensional PAGE after incubation of the nanoparticles with human plasma. In vivo experiments showed the 'stealth' long-circulating properties of the PEGylated nanoparticles after intravenous administration to mice. Thus, the images obtained after nanoparticle-protein incubation were predictive of the behavior observed in vivo. In conclusion, freeze-fracture analysis represents a novel and original qualitative approach to investigate the interactions between proteins and particulate systems.
Similar articles
-
Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system.Electrophoresis. 2007 Jul;28(13):2252-61. doi: 10.1002/elps.200600694. Electrophoresis. 2007. PMID: 17557357
-
Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting.J Control Release. 1999 Jun 28;60(1):121-8. doi: 10.1016/s0168-3659(99)00063-2. J Control Release. 1999. PMID: 10370176
-
PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases.J Neurosci Methods. 2001 Oct 30;111(2):151-5. doi: 10.1016/s0165-0270(01)00450-2. J Neurosci Methods. 2001. PMID: 11595281
-
[Influence of particle size and MePEG molecular weight on in vitro macrophage uptake and in vivo long circulating of stealth nanoparticles in rats].Yao Xue Xue Bao. 2006 Apr;41(4):305-12. Yao Xue Xue Bao. 2006. PMID: 16856473 Chinese.
-
Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood-brain barrier.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Sep-Oct;1(5):463-74. doi: 10.1002/wnan.5. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009. PMID: 20049811 Review.
Cited by
-
Potential applications of engineered nanoparticles in medicine and biology: an update.J Biol Inorg Chem. 2018 Dec;23(8):1185-1204. doi: 10.1007/s00775-018-1600-6. Epub 2018 Aug 10. J Biol Inorg Chem. 2018. PMID: 30097748 Review.
-
A multistep in vitro hemocompatibility testing protocol recapitulating the foreign body reaction to nanocarriers.Drug Deliv Transl Res. 2022 Sep;12(9):2089-2100. doi: 10.1007/s13346-022-01141-6. Epub 2022 Mar 22. Drug Deliv Transl Res. 2022. PMID: 35318565 Free PMC article.
-
Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA.Int J Pharm. 2012 May 1;427(1):123-33. doi: 10.1016/j.ijpharm.2011.08.014. Epub 2011 Aug 12. Int J Pharm. 2012. PMID: 21864664 Free PMC article.
-
Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: last status.Indian J Clin Biochem. 2014 Jul;29(3):333-8. doi: 10.1007/s12291-013-0364-6. Epub 2013 Jul 23. Indian J Clin Biochem. 2014. PMID: 24966482 Free PMC article.
-
Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona.Nat Commun. 2020 Jul 22;11(1):3662. doi: 10.1038/s41467-020-17033-7. Nat Commun. 2020. PMID: 32699280 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources