j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/cdc_places/etl.py
Travis Newby 6f39033dde
Add ability to cache ETL data sources (#2169)
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs

* Update code to be more production-ish

* Move fetch to Extract part of ETL
* Create a downloader to house all downloading operations
* Remove unnecessary "name" in data source

* Format source files with black

* Fix issues from pylint and get the tests working with the new folder structure

* Clean up files with black

* Fix unzip test

* Add caching notes to README

* Fix tests (linting and case sensitivity bug)

* Address PR comments and add API keys for census where missing

* Merging comparator changes from main into this branch for the sake of the PR

* Add note on using cache (-u) during pipeline
2023-03-03 12:26:24 -06:00

104 lines
3.5 KiB
Python

import typing
import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.base import ValidGeoLevel
from data_pipeline.score import field_names
from data_pipeline.utils import get_module_logger
from data_pipeline.config import settings
from data_pipeline.etl.datasource import DataSource
from data_pipeline.etl.datasource import FileDataSource
logger = get_module_logger(__name__)
class CDCPlacesETL(ExtractTransformLoad):
"""#TODO: Need description"""
NAME = "cdc_places"
GEO_LEVEL: ValidGeoLevel = ValidGeoLevel.CENSUS_TRACT
PUERTO_RICO_EXPECTED_IN_DATA = False
CDC_GEOID_FIELD_NAME = "LocationID"
CDC_VALUE_FIELD_NAME = "Data_Value"
CDC_MEASURE_FIELD_NAME = "Measure"
def __init__(self):
# fetch
if settings.DATASOURCE_RETRIEVAL_FROM_AWS:
self.cdc_places_url = (
f"{settings.AWS_JUSTICE40_DATASOURCES_URL}/raw-data-sources/"
"cdc_places/PLACES__Local_Data_for_Better_Health__Census_Tract_Data_2021_release.csv"
)
else:
self.cdc_places_url = "https://chronicdata.cdc.gov/api/views/cwsq-ngmh/rows.csv?accessType=DOWNLOAD"
# input
self.places_source = self.get_sources_path() / "census_tract.csv"
# output
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "cdc_places"
self.COLUMNS_TO_KEEP: typing.List[str] = [
self.GEOID_TRACT_FIELD_NAME,
field_names.DIABETES_FIELD,
field_names.ASTHMA_FIELD,
field_names.HEART_DISEASE_FIELD,
field_names.CANCER_FIELD,
field_names.HEALTH_INSURANCE_FIELD,
field_names.PHYS_HEALTH_NOT_GOOD_FIELD,
]
self.df: pd.DataFrame
def get_data_sources(self) -> [DataSource]:
return [
FileDataSource(
source=self.cdc_places_url, destination=self.places_source
)
]
def extract(self, use_cached_data_sources: bool = False) -> None:
super().extract(
use_cached_data_sources
) # download and extract data sources
self.df = pd.read_csv(
filepath_or_buffer=self.places_source,
dtype={self.CDC_GEOID_FIELD_NAME: "string"},
low_memory=False,
)
def transform(self) -> None:
# Rename GEOID field
self.df.rename(
columns={self.CDC_GEOID_FIELD_NAME: self.GEOID_TRACT_FIELD_NAME},
inplace=True,
errors="raise",
)
# Note: Puerto Rico not included.
self.df = self.df.pivot(
index=self.GEOID_TRACT_FIELD_NAME,
columns=self.CDC_MEASURE_FIELD_NAME,
values=self.CDC_VALUE_FIELD_NAME,
)
# rename columns to be used in score
rename_fields = {
"Current asthma among adults aged >=18 years": field_names.ASTHMA_FIELD,
"Coronary heart disease among adults aged >=18 years": field_names.HEART_DISEASE_FIELD,
"Cancer (excluding skin cancer) among adults aged >=18 years": field_names.CANCER_FIELD,
"Diagnosed diabetes among adults aged >=18 years": field_names.DIABETES_FIELD,
"Physical health not good for >=14 days among adults aged >=18 years": field_names.PHYS_HEALTH_NOT_GOOD_FIELD,
}
self.df.rename(
columns=rename_fields,
inplace=True,
errors="raise",
)
# Make the index (the census tract ID) a column, not the index.
self.output_df = self.df.reset_index()