mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-24 02:24:20 -08:00
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs * Update code to be more production-ish * Move fetch to Extract part of ETL * Create a downloader to house all downloading operations * Remove unnecessary "name" in data source * Format source files with black * Fix issues from pylint and get the tests working with the new folder structure * Clean up files with black * Fix unzip test * Add caching notes to README * Fix tests (linting and case sensitivity bug) * Address PR comments and add API keys for census where missing * Merging comparator changes from main into this branch for the sake of the PR * Add note on using cache (-u) during pipeline
104 lines
3.5 KiB
Python
104 lines
3.5 KiB
Python
import typing
|
|
|
|
import pandas as pd
|
|
from data_pipeline.etl.base import ExtractTransformLoad
|
|
from data_pipeline.etl.base import ValidGeoLevel
|
|
from data_pipeline.score import field_names
|
|
from data_pipeline.utils import get_module_logger
|
|
from data_pipeline.config import settings
|
|
from data_pipeline.etl.datasource import DataSource
|
|
from data_pipeline.etl.datasource import FileDataSource
|
|
|
|
logger = get_module_logger(__name__)
|
|
|
|
|
|
class CDCPlacesETL(ExtractTransformLoad):
|
|
"""#TODO: Need description"""
|
|
|
|
NAME = "cdc_places"
|
|
GEO_LEVEL: ValidGeoLevel = ValidGeoLevel.CENSUS_TRACT
|
|
PUERTO_RICO_EXPECTED_IN_DATA = False
|
|
|
|
CDC_GEOID_FIELD_NAME = "LocationID"
|
|
CDC_VALUE_FIELD_NAME = "Data_Value"
|
|
CDC_MEASURE_FIELD_NAME = "Measure"
|
|
|
|
def __init__(self):
|
|
|
|
# fetch
|
|
if settings.DATASOURCE_RETRIEVAL_FROM_AWS:
|
|
self.cdc_places_url = (
|
|
f"{settings.AWS_JUSTICE40_DATASOURCES_URL}/raw-data-sources/"
|
|
"cdc_places/PLACES__Local_Data_for_Better_Health__Census_Tract_Data_2021_release.csv"
|
|
)
|
|
else:
|
|
self.cdc_places_url = "https://chronicdata.cdc.gov/api/views/cwsq-ngmh/rows.csv?accessType=DOWNLOAD"
|
|
|
|
# input
|
|
self.places_source = self.get_sources_path() / "census_tract.csv"
|
|
|
|
# output
|
|
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "cdc_places"
|
|
|
|
self.COLUMNS_TO_KEEP: typing.List[str] = [
|
|
self.GEOID_TRACT_FIELD_NAME,
|
|
field_names.DIABETES_FIELD,
|
|
field_names.ASTHMA_FIELD,
|
|
field_names.HEART_DISEASE_FIELD,
|
|
field_names.CANCER_FIELD,
|
|
field_names.HEALTH_INSURANCE_FIELD,
|
|
field_names.PHYS_HEALTH_NOT_GOOD_FIELD,
|
|
]
|
|
|
|
self.df: pd.DataFrame
|
|
|
|
def get_data_sources(self) -> [DataSource]:
|
|
return [
|
|
FileDataSource(
|
|
source=self.cdc_places_url, destination=self.places_source
|
|
)
|
|
]
|
|
|
|
def extract(self, use_cached_data_sources: bool = False) -> None:
|
|
|
|
super().extract(
|
|
use_cached_data_sources
|
|
) # download and extract data sources
|
|
|
|
self.df = pd.read_csv(
|
|
filepath_or_buffer=self.places_source,
|
|
dtype={self.CDC_GEOID_FIELD_NAME: "string"},
|
|
low_memory=False,
|
|
)
|
|
|
|
def transform(self) -> None:
|
|
|
|
# Rename GEOID field
|
|
self.df.rename(
|
|
columns={self.CDC_GEOID_FIELD_NAME: self.GEOID_TRACT_FIELD_NAME},
|
|
inplace=True,
|
|
errors="raise",
|
|
)
|
|
# Note: Puerto Rico not included.
|
|
self.df = self.df.pivot(
|
|
index=self.GEOID_TRACT_FIELD_NAME,
|
|
columns=self.CDC_MEASURE_FIELD_NAME,
|
|
values=self.CDC_VALUE_FIELD_NAME,
|
|
)
|
|
|
|
# rename columns to be used in score
|
|
rename_fields = {
|
|
"Current asthma among adults aged >=18 years": field_names.ASTHMA_FIELD,
|
|
"Coronary heart disease among adults aged >=18 years": field_names.HEART_DISEASE_FIELD,
|
|
"Cancer (excluding skin cancer) among adults aged >=18 years": field_names.CANCER_FIELD,
|
|
"Diagnosed diabetes among adults aged >=18 years": field_names.DIABETES_FIELD,
|
|
"Physical health not good for >=14 days among adults aged >=18 years": field_names.PHYS_HEALTH_NOT_GOOD_FIELD,
|
|
}
|
|
self.df.rename(
|
|
columns=rename_fields,
|
|
inplace=True,
|
|
errors="raise",
|
|
)
|
|
|
|
# Make the index (the census tract ID) a column, not the index.
|
|
self.output_df = self.df.reset_index()
|