j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/michigan_ejscreen/etl.py
Travis Newby 6f39033dde
Add ability to cache ETL data sources (#2169)
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs

* Update code to be more production-ish

* Move fetch to Extract part of ETL
* Create a downloader to house all downloading operations
* Remove unnecessary "name" in data source

* Format source files with black

* Fix issues from pylint and get the tests working with the new folder structure

* Clean up files with black

* Fix unzip test

* Add caching notes to README

* Fix tests (linting and case sensitivity bug)

* Address PR comments and add API keys for census where missing

* Merging comparator changes from main into this branch for the sake of the PR

* Add note on using cache (-u) during pipeline
2023-03-03 12:26:24 -06:00

89 lines
3.1 KiB
Python

import pandas as pd
from data_pipeline.config import settings
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.datasource import DataSource
from data_pipeline.etl.datasource import FileDataSource
from data_pipeline.score import field_names
from data_pipeline.utils import get_module_logger
logger = get_module_logger(__name__)
class MichiganEnviroScreenETL(ExtractTransformLoad):
"""Michigan EJ Screen class that ingests dataset represented
here: https://www.arcgis.com/apps/webappviewer/index.html?id=dc4f0647dda34959963488d3f519fd24
This class ingests the data presented in "Assessing the State of Environmental
Justice in Michigan." Please see the README in this module for further details.
"""
def __init__(self):
# fetch
self.michigan_ejscreen_url = (
settings.AWS_JUSTICE40_DATASOURCES_URL
+ "/michigan_ejscore_12212021.csv"
)
# input
self.michigan_ejscreen_source = (
self.get_sources_path() / "michigan_ejscore_12212021.csv"
)
# output
self.CSV_PATH = self.DATA_PATH / "dataset" / "michigan_ejscreen"
self.MICHIGAN_EJSCREEN_PRIORITY_COMMUNITY_THRESHOLD: float = 0.75
self.COLUMNS_TO_KEEP = [
self.GEOID_TRACT_FIELD_NAME,
field_names.MICHIGAN_EJSCREEN_SCORE_FIELD,
field_names.MICHIGAN_EJSCREEN_PERCENTILE_FIELD,
field_names.MICHIGAN_EJSCREEN_PRIORITY_COMMUNITY_FIELD,
]
self.df: pd.DataFrame
def get_data_sources(self) -> [DataSource]:
return [
FileDataSource(
source=self.michigan_ejscreen_url,
destination=self.michigan_ejscreen_source,
)
]
def extract(self, use_cached_data_sources: bool = False) -> None:
super().extract(
use_cached_data_sources
) # download and extract data sources
self.df = pd.read_csv(
filepath_or_buffer=self.michigan_ejscreen_source,
dtype={"GEO_ID": "string"},
low_memory=False,
)
def transform(self) -> None:
self.df.rename(
columns={
"GEO_ID": self.GEOID_TRACT_FIELD_NAME,
"EJ_Score_Cal_Min": field_names.MICHIGAN_EJSCREEN_SCORE_FIELD,
"Pct_CalMin": field_names.MICHIGAN_EJSCREEN_PERCENTILE_FIELD,
},
inplace=True,
)
# Calculate the top quartile of prioritized communities
# Please see pg. 104 - 109 from source:
# pg. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/149105/AssessingtheStateofEnvironmentalJusticeinMichigan_344.pdf
self.df[field_names.MICHIGAN_EJSCREEN_PRIORITY_COMMUNITY_FIELD] = (
self.df[field_names.MICHIGAN_EJSCREEN_PERCENTILE_FIELD]
>= self.MICHIGAN_EJSCREEN_PRIORITY_COMMUNITY_THRESHOLD
)
def load(self) -> None:
# write nationwide csv
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
self.df[self.COLUMNS_TO_KEEP].to_csv(
self.CSV_PATH / "michigan_ejscreen.csv", index=False
)