mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-23 18:14:19 -08:00
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs * Update code to be more production-ish * Move fetch to Extract part of ETL * Create a downloader to house all downloading operations * Remove unnecessary "name" in data source * Format source files with black * Fix issues from pylint and get the tests working with the new folder structure * Clean up files with black * Fix unzip test * Add caching notes to README * Fix tests (linting and case sensitivity bug) * Address PR comments and add API keys for census where missing * Merging comparator changes from main into this branch for the sake of the PR * Add note on using cache (-u) during pipeline
86 lines
3 KiB
Python
86 lines
3 KiB
Python
import pandas as pd
|
|
|
|
from data_pipeline.config import settings
|
|
from data_pipeline.etl.base import ExtractTransformLoad
|
|
from data_pipeline.etl.datasource import DataSource
|
|
from data_pipeline.etl.datasource import FileDataSource
|
|
from data_pipeline.utils import get_module_logger
|
|
|
|
|
|
logger = get_module_logger(__name__)
|
|
|
|
|
|
class HudRecapETL(ExtractTransformLoad):
|
|
def __init__(self):
|
|
|
|
# fetch
|
|
if settings.DATASOURCE_RETRIEVAL_FROM_AWS:
|
|
self.hud_recap_csv_url = (
|
|
f"{settings.AWS_JUSTICE40_DATASOURCES_URL}/raw-data-sources/"
|
|
"hud_recap/Racially_or_Ethnically_Concentrated_Areas_of_Poverty__R_ECAPs_.csv"
|
|
)
|
|
else:
|
|
self.hud_recap_csv_url = (
|
|
"https://opendata.arcgis.com/api/v3/datasets/"
|
|
"56de4edea8264fe5a344da9811ef5d6e_0/downloads/data?format=csv&spatialRefId=4326"
|
|
)
|
|
|
|
# input
|
|
self.hud_recap_source = (
|
|
self.get_sources_path()
|
|
/ "Racially_or_Ethnically_Concentrated_Areas_of_Poverty__R_ECAPs_.csv"
|
|
)
|
|
|
|
# output
|
|
self.CSV_PATH = self.DATA_PATH / "dataset" / "hud_recap"
|
|
|
|
# Defining some variable names
|
|
self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME = (
|
|
"hud_recap_priority_community"
|
|
)
|
|
|
|
self.df: pd.DataFrame
|
|
|
|
def get_data_sources(self) -> [DataSource]:
|
|
return [
|
|
FileDataSource(
|
|
source=self.hud_recap_csv_url, destination=self.hud_recap_source
|
|
)
|
|
]
|
|
|
|
def extract(self, use_cached_data_sources: bool = False) -> None:
|
|
|
|
super().extract(
|
|
use_cached_data_sources
|
|
) # download and extract data sources
|
|
|
|
# Load comparison index (CalEnviroScreen 4)
|
|
self.df = pd.read_csv(self.hud_recap_source, dtype={"GEOID": "string"})
|
|
|
|
def transform(self) -> None:
|
|
|
|
self.df.rename(
|
|
columns={
|
|
"GEOID": self.GEOID_TRACT_FIELD_NAME,
|
|
# Interestingly, there's no data dictionary for the RECAP data that I could find.
|
|
# However, this site (http://www.schousing.com/library/Tax%20Credit/2020/QAP%20Instructions%20(2).pdf)
|
|
# suggests:
|
|
# "If RCAP_Current for the tract in which the site is located is 1, the tract is an R/ECAP. If RCAP_Current is 0, it is not."
|
|
"RCAP_Current": self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME,
|
|
},
|
|
inplace=True,
|
|
)
|
|
|
|
# Convert to boolean
|
|
self.df[self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME] = self.df[
|
|
self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME
|
|
].astype("bool")
|
|
|
|
self.df[self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME].value_counts()
|
|
|
|
self.df.sort_values(by=self.GEOID_TRACT_FIELD_NAME, inplace=True)
|
|
|
|
def load(self) -> None:
|
|
# write nationwide csv
|
|
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
|
|
self.df.to_csv(self.CSV_PATH / "usa.csv", index=False)
|