j40-cejst-2/score/ipython/score_calc_0.1.ipynb
Jorge Escobar c8a7f81f7c
habemus score! 🎉 (#185)
* habemus score!

* etl process for score

* small typo

* adding in score percentiles

Co-authored-by: lucasmbrown-usds <lucas.m.brown@omb.eop.gov>
2021-06-18 10:16:19 -04:00

140 lines
3.5 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "a664f981",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"import pandas as pd\n",
"import csv\n",
"\n",
"data_path = Path.cwd().parent / \"data\"\n",
"fips_csv_path = data_path / \"fips_states_2010.csv\"\n",
"csv_path = data_path / \"score\" / \"csv\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7df430cb",
"metadata": {},
"outputs": [],
"source": [
"# EJSCreen csv Load\n",
"ejscreen_csv = data_path / \"dataset\" / \"ejscreen_2020\" / \"usa.csv\"\n",
"df = pd.read_csv(ejscreen_csv, dtype={'ID': 'string'}, low_memory=False)\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "27677132",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# calculate percentiles\n",
"df['lesshs_percentile'] = df.LESSHSPCT.rank(pct = True)\n",
"df['lowin_percentile'] = df.LOWINCPCT.rank(pct = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f7b864f",
"metadata": {},
"outputs": [],
"source": [
"# calculate scores\n",
"df['score_a'] = df[['lesshs_percentile', 'lowin_percentile']].mean(axis=1)\n",
"df['score_b'] = df.lesshs_percentile * df.lowin_percentile\n",
"\n",
"# Create percentiles for the scores \n",
"df['score_a_percentile'] = df.score_a.rank(pct = True)\n",
"df['score_b_percentile'] = df.score_b.rank(pct = True)\n",
"df['score_a_top_percentile_25'] = df['score_a_percentile'] >= 0.75\n",
"df['score_b_top_percentile_25'] = df['score_b_percentile'] >= 0.75\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91755bcf",
"metadata": {},
"outputs": [],
"source": [
"# strip calculations\n",
"df = df[[\"ID\", \"score_a_percentile\", \"score_b_percentile\",\"score_a_top_percentile_25\",\"score_b_top_percentile_25\"]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3a65af4",
"metadata": {},
"outputs": [],
"source": [
"# write nationwide csv\n",
"df.to_csv(csv_path / f\"usa.csv\", index = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58ddd8b3",
"metadata": {},
"outputs": [],
"source": [
"# write per state csvs\n",
"with open(fips_csv_path) as csv_file:\n",
" csv_reader = csv.reader(csv_file, delimiter=\",\")\n",
" line_count = 0\n",
"\n",
" for row in csv_reader:\n",
" if line_count == 0:\n",
" line_count += 1\n",
" else:\n",
" fips = row[0].strip()\n",
" print(f\"Generating data{fips} csv\")\n",
" df1 = df[df.ID.str[:2] == fips]\n",
" # we need to name the file data01.csv for ogr2ogr csv merge to work\n",
" df1.to_csv(csv_path / f\"data{fips}.csv\", index = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bce50823",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}