j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/hud_recap/etl.py
Nat Hillard c1568e87c0
Data directory should adopt standard Poetry-suggested python package structure (#457)
* Fixes #456 - Our data directory should adopt standard python package structure
* a few missed references
* updating readme
* updating requirements
* Running Black
* Fixes for flake8
* updating pylint
2021-08-05 15:35:54 -04:00

64 lines
2.5 KiB
Python

import pandas as pd
import requests
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.utils import get_module_logger
logger = get_module_logger(__name__)
class HudRecapETL(ExtractTransformLoad):
def __init__(self):
# pylint: disable=line-too-long
self.HUD_RECAP_CSV_URL = "https://opendata.arcgis.com/api/v3/datasets/56de4edea8264fe5a344da9811ef5d6e_0/downloads/data?format=csv&spatialRefId=4326" # noqa: E501
self.HUD_RECAP_CSV = (
self.TMP_PATH
/ "Racially_or_Ethnically_Concentrated_Areas_of_Poverty__R_ECAPs_.csv"
)
self.CSV_PATH = self.DATA_PATH / "dataset" / "hud_recap"
# Definining some variable names
self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME = "hud_recap_priority_community"
self.df: pd.DataFrame
def extract(self) -> None:
logger.info("Downloading HUD Recap Data")
download = requests.get(self.HUD_RECAP_CSV_URL, verify=None)
file_contents = download.content
csv_file = open(self.HUD_RECAP_CSV, "wb")
csv_file.write(file_contents)
csv_file.close()
def transform(self) -> None:
logger.info("Transforming HUD Recap Data")
# Load comparison index (CalEnviroScreen 4)
self.df = pd.read_csv(self.HUD_RECAP_CSV, dtype={"GEOID": "string"})
self.df.rename(
columns={
"GEOID": self.GEOID_TRACT_FIELD_NAME,
# Interestingly, there's no data dictionary for the RECAP data that I could find.
# However, this site (http://www.schousing.com/library/Tax%20Credit/2020/QAP%20Instructions%20(2).pdf)
# suggests:
# "If RCAP_Current for the tract in which the site is located is 1, the tract is an R/ECAP. If RCAP_Current is 0, it is not."
"RCAP_Current": self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME,
},
inplace=True,
)
# Convert to boolean
self.df[self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME] = self.df[
self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME
].astype("bool")
self.df[self.HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME].value_counts()
self.df.sort_values(by=self.GEOID_TRACT_FIELD_NAME, inplace=True)
def load(self) -> None:
logger.info("Saving HUD Recap CSV")
# write nationwide csv
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
self.df.to_csv(self.CSV_PATH / "usa.csv", index=False)