j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/census_acs/etl.py
Shelby Switzer ac62933d16
Initial refactor for Score ETL (#618)
* WIP refactor

* Exract score calculations into their own methods

* do all initial df prep in single method

* Fix error in docs for running etl for single dataset

* WIP understanding HUD and linguistic iso data

* Add comments from initial group review on PR

Co-authored-by: Shelby Switzer <shelby.switzer@cms.hhs.gov>
2021-09-10 10:34:34 -04:00

170 lines
6 KiB
Python

import pandas as pd
import censusdata
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes
from data_pipeline.utils import get_module_logger
from data_pipeline.config import settings
logger = get_module_logger(__name__)
class CensusACSETL(ExtractTransformLoad):
def __init__(self):
self.ACS_YEAR = 2019
self.OUTPUT_PATH = (
self.DATA_PATH / "dataset" / f"census_acs_{self.ACS_YEAR}"
)
self.UNEMPLOYED_FIELD_NAME = "Unemployed civilians (percent)"
self.LINGUISTIC_ISOLATION_FIELD_NAME = "Linguistic isolation (percent)"
self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME = (
"Linguistic isolation (total)"
)
self.LINGUISTIC_ISOLATION_FIELDS = [
"C16002_001E", # Estimate!!Total
"C16002_004E", # Estimate!!Total!!Spanish!!Limited English speaking household
"C16002_007E", # Estimate!!Total!!Other Indo-European languages!!Limited English speaking household
"C16002_010E", # Estimate!!Total!!Asian and Pacific Island languages!!Limited English speaking household
"C16002_013E", # Estimate!!Total!!Other languages!!Limited English speaking household
]
self.MEDIAN_INCOME_FIELD = "B19013_001E"
self.MEDIAN_INCOME_FIELD_NAME = (
"Median household income in the past 12 months"
)
self.MEDIAN_INCOME_STATE_FIELD_NAME = "Median household income (State)"
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME = (
"Median household income (% of state median household income)"
)
self.STATE_GEOID_FIELD_NAME = "GEOID2"
self.df: pd.DataFrame
self.state_median_income_df: pd.DataFrame
self.STATE_MEDIAN_INCOME_FTP_URL = (
settings.AWS_JUSTICE40_DATASOURCES_URL
+ "/2015_to_2019_state_median_income.zip"
)
self.STATE_MEDIAN_INCOME_FILE_PATH = (
self.TMP_PATH / "2015_to_2019_state_median_income.csv"
)
def _fips_from_censusdata_censusgeo(
self, censusgeo: censusdata.censusgeo
) -> str:
"""Create a FIPS code from the proprietary censusgeo index."""
fips = "".join([value for (key, value) in censusgeo.params()])
return fips
def extract(self) -> None:
# Extract state median income
super().extract(
self.STATE_MEDIAN_INCOME_FTP_URL,
self.TMP_PATH,
)
dfs = []
for fips in get_state_fips_codes(self.DATA_PATH):
logger.info(
f"Downloading data for state/territory with FIPS code {fips}"
)
dfs.append(
censusdata.download(
src="acs5",
year=self.ACS_YEAR,
geo=censusdata.censusgeo(
[("state", fips), ("county", "*"), ("block group", "*")]
),
var=[
# Emploment fields
"B23025_005E",
"B23025_003E",
self.MEDIAN_INCOME_FIELD,
]
+ self.LINGUISTIC_ISOLATION_FIELDS,
)
)
self.df = pd.concat(dfs)
self.df[self.GEOID_FIELD_NAME] = self.df.index.to_series().apply(
func=self._fips_from_censusdata_censusgeo
)
self.state_median_income_df = pd.read_csv(
# TODO: Replace with reading from S3.
filepath_or_buffer=self.STATE_MEDIAN_INCOME_FILE_PATH,
dtype={self.STATE_GEOID_FIELD_NAME: "string"},
)
def transform(self) -> None:
logger.info("Starting Census ACS Transform")
# Rename median income
self.df[self.MEDIAN_INCOME_FIELD_NAME] = self.df[
self.MEDIAN_INCOME_FIELD
]
# TODO: handle null values for CBG median income, which are `-666666666`.
# Join state data on CBG data:
self.df[self.STATE_GEOID_FIELD_NAME] = (
self.df[self.GEOID_FIELD_NAME].astype(str).str[0:2]
)
self.df = self.df.merge(
self.state_median_income_df,
how="left",
on=self.STATE_GEOID_FIELD_NAME,
)
# Calculate the income of the block group as a fraction of the state income:
self.df[self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME] = (
self.df[self.MEDIAN_INCOME_FIELD_NAME]
/ self.df[self.MEDIAN_INCOME_STATE_FIELD_NAME]
)
# Calculate percent unemployment.
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
self.df[self.UNEMPLOYED_FIELD_NAME] = (
self.df.B23025_005E / self.df.B23025_003E
)
# Calculate linguistic isolation.
individual_limited_english_fields = [
"C16002_004E",
"C16002_007E",
"C16002_010E",
"C16002_013E",
]
self.df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME] = self.df[
individual_limited_english_fields
].sum(axis=1, skipna=True)
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME] = (
self.df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME].astype(float)
/ self.df["C16002_001E"]
)
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME].describe()
def load(self) -> None:
logger.info("Saving Census ACS Data")
# mkdir census
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
columns_to_include = [
self.GEOID_FIELD_NAME,
self.UNEMPLOYED_FIELD_NAME,
self.LINGUISTIC_ISOLATION_FIELD_NAME,
self.MEDIAN_INCOME_FIELD_NAME,
self.MEDIAN_INCOME_STATE_FIELD_NAME,
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME,
]
self.df[columns_to_include].to_csv(
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
)
def validate(self) -> None:
logger.info("Validating Census ACS Data")
pass