mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-23 18:14:19 -08:00
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs * Update code to be more production-ish * Move fetch to Extract part of ETL * Create a downloader to house all downloading operations * Remove unnecessary "name" in data source * Format source files with black * Fix issues from pylint and get the tests working with the new folder structure * Clean up files with black * Fix unzip test * Add caching notes to README * Fix tests (linting and case sensitivity bug) * Address PR comments and add API keys for census where missing * Merging comparator changes from main into this branch for the sake of the PR * Add note on using cache (-u) during pipeline
175 lines
6 KiB
Python
175 lines
6 KiB
Python
import functools
|
|
|
|
import pandas as pd
|
|
from data_pipeline.config import settings
|
|
from data_pipeline.etl.base import ExtractTransformLoad
|
|
from data_pipeline.etl.datasource import DataSource
|
|
from data_pipeline.etl.datasource import ZIPDataSource
|
|
from data_pipeline.etl.base import ValidGeoLevel
|
|
from data_pipeline.utils import get_module_logger
|
|
|
|
logger = get_module_logger(__name__)
|
|
|
|
|
|
class PersistentPovertyETL(ExtractTransformLoad):
|
|
"""Persistent poverty data.
|
|
|
|
Loaded from `https://s4.ad.brown.edu/Projects/Diversity/Researcher/LTDB.htm`.
|
|
|
|
Codebook: `https://s4.ad.brown.edu/Projects/Diversity/Researcher/LTBDDload/Dfiles/codebooks.pdf`.
|
|
"""
|
|
|
|
NAME = "persistent_poverty"
|
|
GEO_LEVEL: ValidGeoLevel = ValidGeoLevel.CENSUS_TRACT
|
|
PUERTO_RICO_EXPECTED_IN_DATA = False
|
|
|
|
def __init__(self):
|
|
|
|
# fetch
|
|
self.poverty_url = (
|
|
settings.AWS_JUSTICE40_DATASOURCES_URL + "/LTDB_Std_All_Sample.zip"
|
|
)
|
|
|
|
# source
|
|
self.poverty_sources = [
|
|
self.get_sources_path()
|
|
/ "ltdb_std_all_sample"
|
|
/ "ltdb_std_1990_sample.csv",
|
|
self.get_sources_path()
|
|
/ "ltdb_std_all_sample"
|
|
/ "ltdb_std_2000_sample.csv",
|
|
self.get_sources_path()
|
|
/ "ltdb_std_all_sample"
|
|
/ "ltdb_std_2010_sample.csv",
|
|
]
|
|
|
|
# output
|
|
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "persistent_poverty"
|
|
|
|
# Need to change hyperlink to S3
|
|
# self.GEOCORR_PLACES_URL = "https://justice40-data.s3.amazonaws.com/data-sources/persistent_poverty_urban_rural.csv.zip"
|
|
self.GEOID_TRACT_INPUT_FIELD_NAME_1 = "TRTID10"
|
|
self.GEOID_TRACT_INPUT_FIELD_NAME_2 = "tractid"
|
|
# self.URBAN_HEURISTIC_FIELD_NAME = "Urban Heuristic Flag"
|
|
|
|
self.POVERTY_PREFIX = "Individuals in Poverty (percent)"
|
|
self.PERSISTENT_POVERTY_FIELD = "Persistent Poverty Census Tract"
|
|
|
|
self.COLUMNS_TO_KEEP = [
|
|
self.GEOID_TRACT_FIELD_NAME,
|
|
f"{self.POVERTY_PREFIX} (1990)",
|
|
f"{self.POVERTY_PREFIX} (2000)",
|
|
f"{self.POVERTY_PREFIX} (2010)",
|
|
self.PERSISTENT_POVERTY_FIELD,
|
|
]
|
|
|
|
self.df: pd.DataFrame
|
|
|
|
def get_data_sources(self) -> [DataSource]:
|
|
return [
|
|
ZIPDataSource(
|
|
source=self.poverty_url, destination=self.get_sources_path()
|
|
)
|
|
]
|
|
|
|
def _join_input_dfs(self, dfs: list) -> pd.DataFrame:
|
|
df = functools.reduce(
|
|
lambda df_a, df_b: pd.merge(
|
|
left=df_a,
|
|
right=df_b,
|
|
# All data frames will now have this field for tract.
|
|
on=self.GEOID_TRACT_FIELD_NAME,
|
|
how="outer",
|
|
),
|
|
dfs,
|
|
)
|
|
|
|
# Left-pad the tracts with 0s
|
|
expected_length_of_census_tract_field = 11
|
|
df[self.GEOID_TRACT_FIELD_NAME] = (
|
|
df[self.GEOID_TRACT_FIELD_NAME]
|
|
.astype(str)
|
|
.apply(lambda x: x.zfill(expected_length_of_census_tract_field))
|
|
)
|
|
|
|
# Sanity check the join.
|
|
if len(df[self.GEOID_TRACT_FIELD_NAME].str.len().unique()) != 1:
|
|
raise ValueError(
|
|
f"One of the input CSVs uses {self.GEOID_TRACT_FIELD_NAME} with a different length."
|
|
)
|
|
|
|
if len(df) > self.EXPECTED_MAX_CENSUS_TRACTS:
|
|
raise ValueError(f"Too many rows in the join: {len(df)}")
|
|
|
|
return df
|
|
|
|
def extract(self, use_cached_data_sources: bool = False) -> None:
|
|
|
|
super().extract(
|
|
use_cached_data_sources
|
|
) # download and extract data sources
|
|
|
|
temporary_input_dfs = []
|
|
|
|
for file_name in self.poverty_sources:
|
|
temporary_input_df = pd.read_csv(
|
|
filepath_or_buffer=file_name,
|
|
dtype={
|
|
self.GEOID_TRACT_INPUT_FIELD_NAME_1: "string",
|
|
self.GEOID_TRACT_INPUT_FIELD_NAME_2: "string",
|
|
},
|
|
low_memory=False,
|
|
encoding="latin1",
|
|
)
|
|
|
|
# Some CSVs have self.GEOID_TRACT_INPUT_FIELD_NAME_1 as the name of the tract field,
|
|
# and some have self.GEOID_TRACT_INPUT_FIELD_NAME_2. Rename them both to the same tract name.
|
|
temporary_input_df.rename(
|
|
columns={
|
|
self.GEOID_TRACT_INPUT_FIELD_NAME_1: self.GEOID_TRACT_FIELD_NAME,
|
|
self.GEOID_TRACT_INPUT_FIELD_NAME_2: self.GEOID_TRACT_FIELD_NAME,
|
|
},
|
|
inplace=True,
|
|
# Ignore errors b/c of the different field names in different CSVs.
|
|
errors="ignore",
|
|
)
|
|
|
|
temporary_input_dfs.append(temporary_input_df)
|
|
|
|
self.df = self._join_input_dfs(temporary_input_dfs)
|
|
|
|
def transform(self) -> None:
|
|
transformed_df = self.df
|
|
|
|
# Note: the fields are defined as following.
|
|
# dpovXX Description: persons for whom poverty status is determined
|
|
# npovXX Description: persons in poverty
|
|
transformed_df[f"{self.POVERTY_PREFIX} (1990)"] = (
|
|
transformed_df["NPOV90"] / transformed_df["DPOV90"]
|
|
)
|
|
transformed_df[f"{self.POVERTY_PREFIX} (2000)"] = (
|
|
transformed_df["NPOV00"] / transformed_df["DPOV00"]
|
|
)
|
|
# Note: for 2010, they use ACS data ending in 2012 that has 2010 as its midpoint year.
|
|
transformed_df[f"{self.POVERTY_PREFIX} (2010)"] = (
|
|
transformed_df["npov12"] / transformed_df["dpov12"]
|
|
)
|
|
|
|
poverty_threshold = 0.2
|
|
|
|
transformed_df[self.PERSISTENT_POVERTY_FIELD] = (
|
|
(
|
|
transformed_df[f"{self.POVERTY_PREFIX} (1990)"]
|
|
>= poverty_threshold
|
|
)
|
|
& (
|
|
transformed_df[f"{self.POVERTY_PREFIX} (2000)"]
|
|
>= poverty_threshold
|
|
)
|
|
& (
|
|
transformed_df[f"{self.POVERTY_PREFIX} (2010)"]
|
|
>= poverty_threshold
|
|
)
|
|
)
|
|
|
|
self.output_df = transformed_df
|