j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/maryland_ejscreen/etl.py
Travis Newby 6f39033dde
Add ability to cache ETL data sources (#2169)
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs

* Update code to be more production-ish

* Move fetch to Extract part of ETL
* Create a downloader to house all downloading operations
* Remove unnecessary "name" in data source

* Format source files with black

* Fix issues from pylint and get the tests working with the new folder structure

* Clean up files with black

* Fix unzip test

* Add caching notes to README

* Fix tests (linting and case sensitivity bug)

* Address PR comments and add API keys for census where missing

* Merging comparator changes from main into this branch for the sake of the PR

* Add note on using cache (-u) during pipeline
2023-03-03 12:26:24 -06:00

127 lines
4.6 KiB
Python

from glob import glob
import geopandas as gpd
import pandas as pd
from data_pipeline.config import settings
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.datasource import DataSource
from data_pipeline.etl.datasource import ZIPDataSource
from data_pipeline.score import field_names
from data_pipeline.utils import get_module_logger
logger = get_module_logger(__name__)
class MarylandEJScreenETL(ExtractTransformLoad):
"""Maryland EJSCREEN class that ingests dataset represented
here: https://p1.cgis.umd.edu/mdejscreen/help.html
Please see the README in this module for further details.
"""
def __init__(self):
# fetch
self.maryland_ejscreen_url = (
settings.AWS_JUSTICE40_DATASOURCES_URL + "/MD_EJScreen.zip"
)
# input
self.shape_files_source = self.get_sources_path() / "mdejscreen"
# output
self.OUTPUT_CSV_PATH = self.DATA_PATH / "dataset" / "maryland_ejscreen"
self.COLUMNS_TO_KEEP = [
self.GEOID_TRACT_FIELD_NAME,
field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD,
]
self.df: pd.DataFrame
self.dfs_list: pd.DataFrame
def get_data_sources(self) -> [DataSource]:
return [
ZIPDataSource(
source=self.maryland_ejscreen_url,
destination=self.get_sources_path(),
)
]
def extract(self, use_cached_data_sources: bool = False) -> None:
super().extract(
use_cached_data_sources
) # download and extract data sources
logger.debug("Downloading 207MB Maryland EJSCREEN Data")
list_of_files = list(glob(str(self.shape_files_source) + "/*.shp"))
# Ignore counties because this is not the level of measurement
# that is consistent with our current scoring and ranking methodology.
self.dfs_list = [
gpd.read_file(f)
for f in list_of_files
if not f.endswith("CountiesEJScore.shp")
]
def transform(self) -> None:
# Set the Census tract as the index and drop the geometry column
# that produces the census tract boundaries.
# The latter is because Geopandas raises an exception if there
# are duplicate geometry columns.
# Moreover, since the unit of measurement is at the tract level
# we can consistantly merge this with other datasets
self.dfs_list = [
df.set_index("Census_Tra").drop("geometry", axis=1)
for df in self.dfs_list
]
# pylint: disable=unsubscriptable-object
self.df = gpd.GeoDataFrame(pd.concat(self.dfs_list, axis=1))
# Reset index so that we no longer have the tract as our index
self.df = self.df.reset_index()
# coerce GEODID into integer
# The only reason why this is done is because Maryland's GEODID's start with
# "24". This is NOT standard practice and should never be done as rightly pointed
# out by Lucas: "converting to int would lose the leading 0 and make this geoid invalid".
# pylint: disable=unsupported-assignment-operation, unsubscriptable-object
self.df["Census_Tra"] = (self.df["Census_Tra"]).astype(int)
# Drop the 10 census tracts that are zero: please see here:
# https://github.com/usds/justice40-tool/issues/239#issuecomment-995821572
self.df = self.df[self.df["Census_Tra"] != 0]
# Rename columns
self.df.rename(
columns={
"Census_Tra": self.GEOID_TRACT_FIELD_NAME,
"EJScore": field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
},
inplace=True,
)
# This computational step will be used to establish a
# threshold for burden (line 104)
self.df[
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX
] = self.df[field_names.MARYLAND_EJSCREEN_SCORE_FIELD].rank(
pct=True, ascending=True
)
# An arbitrarily chosen threshold is used in the comparison tool output
self.df[field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD] = (
self.df[
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX
]
>= 0.75
)
def load(self) -> None:
# write maryland tracts to csv
self.OUTPUT_CSV_PATH.mkdir(parents=True, exist_ok=True)
self.df[self.COLUMNS_TO_KEEP].to_csv(
self.OUTPUT_CSV_PATH / "maryland.csv", index=False
)