mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-23 18:14:19 -08:00
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs * Update code to be more production-ish * Move fetch to Extract part of ETL * Create a downloader to house all downloading operations * Remove unnecessary "name" in data source * Format source files with black * Fix issues from pylint and get the tests working with the new folder structure * Clean up files with black * Fix unzip test * Add caching notes to README * Fix tests (linting and case sensitivity bug) * Address PR comments and add API keys for census where missing * Merging comparator changes from main into this branch for the sake of the PR * Add note on using cache (-u) during pipeline
127 lines
4.6 KiB
Python
127 lines
4.6 KiB
Python
from glob import glob
|
|
|
|
import geopandas as gpd
|
|
import pandas as pd
|
|
from data_pipeline.config import settings
|
|
from data_pipeline.etl.base import ExtractTransformLoad
|
|
from data_pipeline.etl.datasource import DataSource
|
|
from data_pipeline.etl.datasource import ZIPDataSource
|
|
from data_pipeline.score import field_names
|
|
from data_pipeline.utils import get_module_logger
|
|
|
|
logger = get_module_logger(__name__)
|
|
|
|
|
|
class MarylandEJScreenETL(ExtractTransformLoad):
|
|
"""Maryland EJSCREEN class that ingests dataset represented
|
|
here: https://p1.cgis.umd.edu/mdejscreen/help.html
|
|
Please see the README in this module for further details.
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
# fetch
|
|
self.maryland_ejscreen_url = (
|
|
settings.AWS_JUSTICE40_DATASOURCES_URL + "/MD_EJScreen.zip"
|
|
)
|
|
|
|
# input
|
|
self.shape_files_source = self.get_sources_path() / "mdejscreen"
|
|
|
|
# output
|
|
self.OUTPUT_CSV_PATH = self.DATA_PATH / "dataset" / "maryland_ejscreen"
|
|
|
|
self.COLUMNS_TO_KEEP = [
|
|
self.GEOID_TRACT_FIELD_NAME,
|
|
field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
|
|
field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD,
|
|
]
|
|
|
|
self.df: pd.DataFrame
|
|
self.dfs_list: pd.DataFrame
|
|
|
|
def get_data_sources(self) -> [DataSource]:
|
|
return [
|
|
ZIPDataSource(
|
|
source=self.maryland_ejscreen_url,
|
|
destination=self.get_sources_path(),
|
|
)
|
|
]
|
|
|
|
def extract(self, use_cached_data_sources: bool = False) -> None:
|
|
|
|
super().extract(
|
|
use_cached_data_sources
|
|
) # download and extract data sources
|
|
|
|
logger.debug("Downloading 207MB Maryland EJSCREEN Data")
|
|
list_of_files = list(glob(str(self.shape_files_source) + "/*.shp"))
|
|
|
|
# Ignore counties because this is not the level of measurement
|
|
# that is consistent with our current scoring and ranking methodology.
|
|
self.dfs_list = [
|
|
gpd.read_file(f)
|
|
for f in list_of_files
|
|
if not f.endswith("CountiesEJScore.shp")
|
|
]
|
|
|
|
def transform(self) -> None:
|
|
|
|
# Set the Census tract as the index and drop the geometry column
|
|
# that produces the census tract boundaries.
|
|
# The latter is because Geopandas raises an exception if there
|
|
# are duplicate geometry columns.
|
|
# Moreover, since the unit of measurement is at the tract level
|
|
# we can consistantly merge this with other datasets
|
|
self.dfs_list = [
|
|
df.set_index("Census_Tra").drop("geometry", axis=1)
|
|
for df in self.dfs_list
|
|
]
|
|
# pylint: disable=unsubscriptable-object
|
|
self.df = gpd.GeoDataFrame(pd.concat(self.dfs_list, axis=1))
|
|
|
|
# Reset index so that we no longer have the tract as our index
|
|
self.df = self.df.reset_index()
|
|
# coerce GEODID into integer
|
|
# The only reason why this is done is because Maryland's GEODID's start with
|
|
# "24". This is NOT standard practice and should never be done as rightly pointed
|
|
# out by Lucas: "converting to int would lose the leading 0 and make this geoid invalid".
|
|
# pylint: disable=unsupported-assignment-operation, unsubscriptable-object
|
|
self.df["Census_Tra"] = (self.df["Census_Tra"]).astype(int)
|
|
|
|
# Drop the 10 census tracts that are zero: please see here:
|
|
# https://github.com/usds/justice40-tool/issues/239#issuecomment-995821572
|
|
self.df = self.df[self.df["Census_Tra"] != 0]
|
|
# Rename columns
|
|
self.df.rename(
|
|
columns={
|
|
"Census_Tra": self.GEOID_TRACT_FIELD_NAME,
|
|
"EJScore": field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
|
|
},
|
|
inplace=True,
|
|
)
|
|
|
|
# This computational step will be used to establish a
|
|
# threshold for burden (line 104)
|
|
self.df[
|
|
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
|
|
+ field_names.PERCENTILE_FIELD_SUFFIX
|
|
] = self.df[field_names.MARYLAND_EJSCREEN_SCORE_FIELD].rank(
|
|
pct=True, ascending=True
|
|
)
|
|
|
|
# An arbitrarily chosen threshold is used in the comparison tool output
|
|
self.df[field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD] = (
|
|
self.df[
|
|
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
|
|
+ field_names.PERCENTILE_FIELD_SUFFIX
|
|
]
|
|
>= 0.75
|
|
)
|
|
|
|
def load(self) -> None:
|
|
# write maryland tracts to csv
|
|
self.OUTPUT_CSV_PATH.mkdir(parents=True, exist_ok=True)
|
|
self.df[self.COLUMNS_TO_KEEP].to_csv(
|
|
self.OUTPUT_CSV_PATH / "maryland.csv", index=False
|
|
)
|