j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/calenviroscreen/etl.py
Travis Newby 6f39033dde
Add ability to cache ETL data sources (#2169)
* Add a rough prototype allowing a developer to pre-download data sources for all ETLs

* Update code to be more production-ish

* Move fetch to Extract part of ETL
* Create a downloader to house all downloading operations
* Remove unnecessary "name" in data source

* Format source files with black

* Fix issues from pylint and get the tests working with the new folder structure

* Clean up files with black

* Fix unzip test

* Add caching notes to README

* Fix tests (linting and case sensitivity bug)

* Address PR comments and add API keys for census where missing

* Merging comparator changes from main into this branch for the sake of the PR

* Add note on using cache (-u) during pipeline
2023-03-03 12:26:24 -06:00

94 lines
3.1 KiB
Python

import pandas as pd
from data_pipeline.config import settings
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.datasource import DataSource
from data_pipeline.etl.datasource import ZIPDataSource
from data_pipeline.utils import get_module_logger
logger = get_module_logger(__name__)
class CalEnviroScreenETL(ExtractTransformLoad):
"""California environmental screen
TODO: Need good description
"""
def __init__(self):
# fetch
self.calenviroscreen_ftp_url = (
settings.AWS_JUSTICE40_DATASOURCES_URL
+ "/CalEnviroScreen_4.0_2021.zip"
)
# input
self.calenviroscreen_source = (
self.get_sources_path() / "CalEnviroScreen_4.0_2021.csv"
)
# output
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "calenviroscreen4"
# Defining some variable names
self.CALENVIROSCREEN_SCORE_FIELD_NAME = "calenviroscreen_score"
self.CALENVIROSCREEN_PERCENTILE_FIELD_NAME = (
"calenviroscreen_percentile"
)
self.CALENVIROSCREEN_PRIORITY_COMMUNITY_FIELD_NAME = (
"calenviroscreen_priority_community"
)
# Choosing constants
# None of these numbers are final, but just for the purposes of comparison.
self.CALENVIROSCREEN_PRIORITY_COMMUNITY_THRESHOLD = 75
self.df: pd.DataFrame
def get_data_sources(self) -> [DataSource]:
return [
ZIPDataSource(
source=self.calenviroscreen_ftp_url,
destination=self.get_sources_path(),
)
]
def extract(self, use_cached_data_sources: bool = False) -> None:
super().extract(
use_cached_data_sources
) # download and extract data sources
self.df = pd.read_csv(
self.calenviroscreen_source, dtype={"Census Tract": "string"}
)
def transform(self) -> None:
# Data from https://calenviroscreen-oehha.hub.arcgis.com/#Data, specifically:
# https://oehha.ca.gov/media/downloads/calenviroscreen/document/calenviroscreen40resultsdatadictionaryd12021.zip
# Load comparison index (CalEnviroScreen 4)
self.df.rename(
columns={
"Census Tract": self.GEOID_TRACT_FIELD_NAME,
"DRAFT CES 4.0 Score": self.CALENVIROSCREEN_SCORE_FIELD_NAME,
"DRAFT CES 4.0 Percentile": self.CALENVIROSCREEN_PERCENTILE_FIELD_NAME,
},
inplace=True,
)
# Add a leading "0" to the Census Tract to match our format in other data frames.
self.df[self.GEOID_TRACT_FIELD_NAME] = (
"0" + self.df[self.GEOID_TRACT_FIELD_NAME]
)
# Calculate the top K% of prioritized communities
self.df[self.CALENVIROSCREEN_PRIORITY_COMMUNITY_FIELD_NAME] = (
self.df[self.CALENVIROSCREEN_PERCENTILE_FIELD_NAME]
>= self.CALENVIROSCREEN_PRIORITY_COMMUNITY_THRESHOLD
)
def load(self) -> None:
# write nationwide csv
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
self.df.to_csv(self.OUTPUT_PATH / "data06.csv", index=False)