j40-cejst-2/data/data-pipeline/data_pipeline/etl/runner.py
2021-12-14 14:26:14 -05:00

187 lines
5.1 KiB
Python

import importlib
import concurrent.futures
from data_pipeline.etl.score.etl_score import ScoreETL
from data_pipeline.etl.score.etl_score_geo import GeoScoreETL
from data_pipeline.etl.score.etl_score_post import PostScoreETL
from . import constants
def get_datasets_to_run(dataset_to_run: str):
"""Returns a list of appropriate datasets to run given input args
Args:
dataset_to_run (str): Run a specific ETL process. If missing, runs all processes (optional)
Returns:
None
"""
dataset_list = constants.DATASET_LIST
etls_to_search = dataset_list + [constants.CENSUS_INFO]
if dataset_to_run:
dataset_element = next(
(item for item in etls_to_search if item["name"] == dataset_to_run),
None,
)
if not dataset_element:
raise ValueError("Invalid dataset name")
else:
# reset the list to just the dataset
dataset_list = [dataset_element]
return dataset_list
def run_etl_single_dataset(dataset: str = None) -> str:
"""Runs a specific dataset
Args:
dataset (str): A specific dataset eligible for a specific ETL process.
Returns:
None
"""
etl_module = importlib.import_module(
f"data_pipeline.etl.sources.{dataset['module_dir']}.etl"
)
etl_class = getattr(etl_module, dataset["class_name"])
etl_instance = etl_class()
etl_module = importlib.import_module(
f"data_pipeline.etl.sources.{dataset['module_dir']}.etl"
)
etl_class = getattr(etl_module, dataset["class_name"])
etl_instance = etl_class()
# run extract
etl_instance.extract()
# run transform
etl_instance.transform()
# run load
etl_instance.load()
# cleanup
etl_instance.cleanup()
message = f"Finished ETL for {dataset}"
return message
def etl_runner(dataset_to_run: str = None) -> None:
"""Runs all etl processes or a specific one
Args:
dataset_to_run (str): Run a specific ETL process. If missing, runs all processes (optional)
Returns:
None
"""
dataset_list = get_datasets_to_run(dataset_to_run)
number_of_threads = 10
futures_list = []
results = []
with concurrent.futures.ThreadPoolExecutor(
max_workers=number_of_threads
) as executor:
for dataset in dataset_list:
futures = executor.submit(
# manually create Future object
# this allows us to manage exceptions
# and callbacks more thoughtfully
run_etl_single_dataset,
dataset,
)
futures_list.append(futures)
for future in futures_list:
try:
# emprically tested timeout to accomdate
# 1) NRI; 2) Tree-equity; 3) census
# datasets. Specifically, these
# three datasets contribute to most of
# i/o resource consumption and network latency
result = future.result(timeout=300)
results.append(result)
# this catches any exception for that given dataset
# one could customize this to specify which dataset
# but we perform so much logging that this may be
# corroborating evidence
except Exception:
results.append(None)
# sanity check to ensure all of our datasets
# returned successfully (even though not in any
# particular order)
for result in results:
print(f"Result from future: {result}")
pass
def score_generate() -> None:
"""Generates the score and saves it on the local data directory
Args:
None
Returns:
None
"""
# Score Gen
score_gen = ScoreETL()
score_gen.extract()
score_gen.transform()
score_gen.load()
def score_post(data_source: str = "local") -> None:
"""Posts the score files to the local directory
Args:
data_source (str): Source for the census data (optional)
Options:
- local (default): fetch census data from the local data directory
- aws: fetch census from AWS S3 J40 data repository
Returns:
None
"""
# Post Score Processing
score_post = PostScoreETL(data_source=data_source)
score_post.extract()
score_post.transform()
score_post.load()
score_post.cleanup()
def score_geo(data_source: str = "local") -> None:
"""Generates the geojson files with score data baked in
Args:
data_source (str): Source for the census data (optional)
Options:
- local (default): fetch census data from the local data directory
- aws: fetch census from AWS S3 J40 data repository
Returns:
None
"""
# Score Geo
score_geo = GeoScoreETL(data_source=data_source)
score_geo.extract()
score_geo.transform()
score_geo.load()
def _find_dataset_index(dataset_list, key, value):
for i, element in enumerate(dataset_list):
if element[key] == value:
return i
return -1