mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-24 10:34:18 -08:00
Imputes income field with a light refactor. Needs more refactor and more tests (I spotchecked). Next ticket will check and address but a lot of "narwhal" architecture is here.
514 lines
20 KiB
Python
514 lines
20 KiB
Python
from collections import namedtuple
|
|
import os
|
|
import pandas as pd
|
|
import geopandas as gpd
|
|
|
|
from data_pipeline.config import settings
|
|
from data_pipeline.etl.base import ExtractTransformLoad
|
|
from data_pipeline.etl.sources.census_acs.etl_utils import (
|
|
retrieve_census_acs_data,
|
|
)
|
|
from data_pipeline.etl.sources.census_acs.etl_imputations import (
|
|
calculate_income_measures,
|
|
)
|
|
|
|
from data_pipeline.utils import get_module_logger, unzip_file_from_url
|
|
from data_pipeline.score import field_names
|
|
|
|
logger = get_module_logger(__name__)
|
|
|
|
# because now there is a requirement for the us.json, this will port from
|
|
# AWS when a local copy does not exist.
|
|
CENSUS_DATA_S3_URL = settings.AWS_JUSTICE40_DATASOURCES_URL + "/census.zip"
|
|
|
|
|
|
class CensusACSETL(ExtractTransformLoad):
|
|
def __init__(self):
|
|
self.ACS_YEAR = 2019
|
|
self.OUTPUT_PATH = (
|
|
self.DATA_PATH / "dataset" / f"census_acs_{self.ACS_YEAR}"
|
|
)
|
|
|
|
self.TOTAL_UNEMPLOYED_FIELD = "B23025_005E"
|
|
self.TOTAL_IN_LABOR_FORCE = "B23025_003E"
|
|
self.EMPLOYMENT_FIELDS = [
|
|
self.TOTAL_UNEMPLOYED_FIELD,
|
|
self.TOTAL_IN_LABOR_FORCE,
|
|
]
|
|
self.UNEMPLOYED_FIELD_NAME = "Unemployment (percent)"
|
|
|
|
self.LINGUISTIC_ISOLATION_FIELD_NAME = "Linguistic isolation (percent)"
|
|
self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME = (
|
|
"Linguistic isolation (total)"
|
|
)
|
|
self.LINGUISTIC_ISOLATION_FIELDS = [
|
|
"C16002_001E", # Estimate!!Total
|
|
"C16002_004E", # Estimate!!Total!!Spanish!!Limited English speaking household
|
|
"C16002_007E", # Estimate!!Total!!Other Indo-European languages!!Limited English speaking household
|
|
"C16002_010E", # Estimate!!Total!!Asian and Pacific Island languages!!Limited English speaking household
|
|
"C16002_013E", # Estimate!!Total!!Other languages!!Limited English speaking household
|
|
]
|
|
self.MEDIAN_INCOME_FIELD = "B19013_001E"
|
|
self.MEDIAN_INCOME_FIELD_NAME = (
|
|
"Median household income in the past 12 months"
|
|
)
|
|
self.POVERTY_FIELDS = [
|
|
"C17002_001E", # Estimate!!Total,
|
|
"C17002_002E", # Estimate!!Total!!Under .50
|
|
"C17002_003E", # Estimate!!Total!!.50 to .99
|
|
"C17002_004E", # Estimate!!Total!!1.00 to 1.24
|
|
"C17002_005E", # Estimate!!Total!!1.25 to 1.49
|
|
"C17002_006E", # Estimate!!Total!!1.50 to 1.84
|
|
"C17002_007E", # Estimate!!Total!!1.85 to 1.99
|
|
]
|
|
|
|
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME = (
|
|
"Percent of individuals < 100% Federal Poverty Line"
|
|
)
|
|
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME = (
|
|
"Percent of individuals < 150% Federal Poverty Line"
|
|
)
|
|
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME = (
|
|
"Percent of individuals < 200% Federal Poverty Line"
|
|
)
|
|
self.IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME = (
|
|
"Percent of individuals < 200% Federal Poverty Line, imputed"
|
|
)
|
|
|
|
self.ADJUSTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME = (
|
|
"Adjusted percent of individuals < 200% Federal Poverty Line"
|
|
)
|
|
|
|
self.ADJUSTED_AND_IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME_PRELIMINARY = (
|
|
"Preliminary adjusted percent of individuals < 200% Federal Poverty Line,"
|
|
+ " imputed"
|
|
)
|
|
|
|
self.ADJUSTED_AND_IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME = (
|
|
"Adjusted percent of individuals < 200% Federal Poverty Line,"
|
|
+ " imputed"
|
|
)
|
|
|
|
self.MEDIAN_HOUSE_VALUE_FIELD = "B25077_001E"
|
|
self.MEDIAN_HOUSE_VALUE_FIELD_NAME = (
|
|
"Median value ($) of owner-occupied housing units"
|
|
)
|
|
|
|
# Educational attainment figures
|
|
self.EDUCATION_POPULATION_OVER_25 = "B15003_001E" # Estimate!!Total
|
|
self.EDUCATION_NO_SCHOOLING = (
|
|
"B15003_002E" # Estimate!!Total!!No schooling completed
|
|
)
|
|
self.EDUCATION_NURSERY = (
|
|
"B15003_003E" # Estimate!!Total!!Nursery school
|
|
)
|
|
self.EDUCATION_KINDERGARTEN = (
|
|
"B15003_004E" # Estimate!!Total!!Kindergarten
|
|
)
|
|
self.EDUCATION_FIRST = "B15003_005E" # Estimate!!Total!!1st grade
|
|
self.EDUCATION_SECOND = "B15003_006E" # Estimate!!Total!!2nd grade
|
|
self.EDUCATION_THIRD = "B15003_007E" # Estimate!!Total!!3rd grade
|
|
self.EDUCATION_FOURTH = "B15003_008E" # Estimate!!Total!!4th grade
|
|
self.EDUCATION_FIFTH = "B15003_009E" # Estimate!!Total!!5th grade
|
|
self.EDUCATION_SIXTH = "B15003_010E" # Estimate!!Total!!6th grade
|
|
self.EDUCATION_SEVENTH = "B15003_011E" # Estimate!!Total!!7th grade
|
|
self.EDUCATION_EIGHTH = "B15003_012E" # Estimate!!Total!!8th grade
|
|
self.EDUCATION_NINTH = "B15003_013E" # Estimate!!Total!!9th grade
|
|
self.EDUCATION_TENTH = "B15003_014E" # Estimate!!Total!!10th grade
|
|
self.EDUCATION_ELEVENTH = "B15003_015E" # Estimate!!Total!!11th grade
|
|
self.EDUCATION_TWELFTH_NO_DIPLOMA = (
|
|
"B15003_016E" # Estimate!!Total!!12th grade, no diploma
|
|
)
|
|
|
|
self.EDUCATIONAL_FIELDS = [
|
|
self.EDUCATION_POPULATION_OVER_25,
|
|
self.EDUCATION_NO_SCHOOLING,
|
|
self.EDUCATION_NURSERY,
|
|
self.EDUCATION_KINDERGARTEN,
|
|
self.EDUCATION_FIRST,
|
|
self.EDUCATION_SECOND,
|
|
self.EDUCATION_THIRD,
|
|
self.EDUCATION_FOURTH,
|
|
self.EDUCATION_FIFTH,
|
|
self.EDUCATION_SIXTH,
|
|
self.EDUCATION_SEVENTH,
|
|
self.EDUCATION_EIGHTH,
|
|
self.EDUCATION_NINTH,
|
|
self.EDUCATION_TENTH,
|
|
self.EDUCATION_ELEVENTH,
|
|
self.EDUCATION_TWELFTH_NO_DIPLOMA,
|
|
]
|
|
|
|
self.HIGH_SCHOOL_ED_RAW_COUNT_FIELD = (
|
|
"Individuals age 25 or over with less than high school degree"
|
|
)
|
|
self.HIGH_SCHOOL_ED_FIELD = "Percent individuals age 25 or over with less than high school degree"
|
|
|
|
# College attendance fields
|
|
self.COLLEGE_ATTENDANCE_TOTAL_POPULATION_ASKED = (
|
|
"B14004_001E" # Estimate!!Total
|
|
)
|
|
self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PUBLIC = "B14004_003E" # Estimate!!Total!!Male!!Enrolled in public college or graduate school
|
|
self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PRIVATE = "B14004_008E" # Estimate!!Total!!Male!!Enrolled in private college or graduate school
|
|
self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PUBLIC = "B14004_019E" # Estimate!!Total!!Female!!Enrolled in public college or graduate school
|
|
self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PRIVATE = "B14004_024E" # Estimate!!Total!!Female!!Enrolled in private college or graduate school
|
|
|
|
self.COLLEGE_ATTENDANCE_FIELDS = [
|
|
self.COLLEGE_ATTENDANCE_TOTAL_POPULATION_ASKED,
|
|
self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PUBLIC,
|
|
self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PRIVATE,
|
|
self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PUBLIC,
|
|
self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PRIVATE,
|
|
]
|
|
|
|
self.COLLEGE_ATTENDANCE_FIELD = (
|
|
"Percent enrollment in college or graduate school"
|
|
)
|
|
|
|
self.IMPUTED_COLLEGE_ATTENDANCE_FIELD = (
|
|
"Percent enrollment in college or graduate school, imputed"
|
|
)
|
|
|
|
self.COLLEGE_NON_ATTENDANCE_FIELD = "Percent of population not currently enrolled in college or graduate school"
|
|
|
|
self.RE_FIELDS = [
|
|
"B02001_001E",
|
|
"B02001_002E",
|
|
"B02001_003E",
|
|
"B02001_004E",
|
|
"B02001_005E",
|
|
"B02001_006E",
|
|
"B02001_007E",
|
|
"B02001_008E",
|
|
"B02001_009E",
|
|
"B02001_010E",
|
|
"B03002_001E",
|
|
"B03002_003E",
|
|
"B03003_001E",
|
|
"B03003_003E",
|
|
]
|
|
|
|
# Name output demographics fields.
|
|
self.BLACK_FIELD_NAME = "Black or African American alone"
|
|
self.AMERICAN_INDIAN_FIELD_NAME = (
|
|
"American Indian and Alaska Native alone"
|
|
)
|
|
self.ASIAN_FIELD_NAME = "Asian alone"
|
|
self.HAWAIIAN_FIELD_NAME = "Native Hawaiian and Other Pacific alone"
|
|
self.TWO_OR_MORE_RACES_FIELD_NAME = "Two or more races"
|
|
self.NON_HISPANIC_WHITE_FIELD_NAME = "Non-Hispanic White"
|
|
self.HISPANIC_FIELD_NAME = "Hispanic or Latino"
|
|
|
|
self.RE_OUTPUT_FIELDS = [
|
|
self.BLACK_FIELD_NAME,
|
|
self.AMERICAN_INDIAN_FIELD_NAME,
|
|
self.ASIAN_FIELD_NAME,
|
|
self.HAWAIIAN_FIELD_NAME,
|
|
self.TWO_OR_MORE_RACES_FIELD_NAME,
|
|
self.NON_HISPANIC_WHITE_FIELD_NAME,
|
|
self.HISPANIC_FIELD_NAME,
|
|
]
|
|
|
|
self.PERCENT_PREFIX = "Percent "
|
|
|
|
self.STATE_GEOID_FIELD_NAME = "GEOID2"
|
|
|
|
self.COLUMNS_TO_KEEP = (
|
|
[
|
|
self.GEOID_TRACT_FIELD_NAME,
|
|
self.UNEMPLOYED_FIELD_NAME,
|
|
self.LINGUISTIC_ISOLATION_FIELD_NAME,
|
|
self.MEDIAN_INCOME_FIELD_NAME,
|
|
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME,
|
|
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME,
|
|
self.IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
|
|
self.MEDIAN_HOUSE_VALUE_FIELD_NAME,
|
|
self.HIGH_SCHOOL_ED_FIELD,
|
|
self.COLLEGE_ATTENDANCE_FIELD,
|
|
self.COLLEGE_NON_ATTENDANCE_FIELD,
|
|
self.IMPUTED_COLLEGE_ATTENDANCE_FIELD,
|
|
]
|
|
+ self.RE_OUTPUT_FIELDS
|
|
+ [self.PERCENT_PREFIX + field for field in self.RE_OUTPUT_FIELDS]
|
|
+ [
|
|
field_names.POVERTY_LESS_THAN_200_FPL_FIELD,
|
|
field_names.POVERTY_LESS_THAN_200_FPL_IMPUTED_FIELD,
|
|
]
|
|
)
|
|
|
|
self.df: pd.DataFrame
|
|
|
|
def _merge_geojson(
|
|
self,
|
|
df: pd.DataFrame,
|
|
usa_geo_df: gpd.GeoDataFrame,
|
|
geoid_field: str = "GEOID10",
|
|
geometry_field: str = "geometry",
|
|
state_code_field: str = "STATEFP10",
|
|
county_code_field: str = "COUNTYFP10",
|
|
) -> gpd.GeoDataFrame:
|
|
usa_geo_df[geoid_field] = (
|
|
usa_geo_df[geoid_field].astype(str).str.zfill(11)
|
|
)
|
|
return gpd.GeoDataFrame(
|
|
df.merge(
|
|
usa_geo_df[
|
|
[
|
|
geoid_field,
|
|
geometry_field,
|
|
state_code_field,
|
|
county_code_field,
|
|
]
|
|
],
|
|
left_on=[self.GEOID_TRACT_FIELD_NAME],
|
|
right_on=[geoid_field],
|
|
)
|
|
)
|
|
|
|
def extract(self) -> None:
|
|
# Define the variables to retrieve
|
|
variables = (
|
|
[
|
|
self.MEDIAN_INCOME_FIELD,
|
|
self.MEDIAN_HOUSE_VALUE_FIELD,
|
|
]
|
|
+ self.EMPLOYMENT_FIELDS
|
|
+ self.LINGUISTIC_ISOLATION_FIELDS
|
|
+ self.POVERTY_FIELDS
|
|
+ self.EDUCATIONAL_FIELDS
|
|
+ self.RE_FIELDS
|
|
+ self.COLLEGE_ATTENDANCE_FIELDS
|
|
)
|
|
|
|
self.df = retrieve_census_acs_data(
|
|
acs_year=self.ACS_YEAR,
|
|
variables=variables,
|
|
tract_output_field_name=self.GEOID_TRACT_FIELD_NAME,
|
|
data_path_for_fips_codes=self.DATA_PATH,
|
|
)
|
|
|
|
def transform(self) -> None:
|
|
logger.info("Starting Census ACS Transform")
|
|
|
|
df = self.df
|
|
|
|
# Here we join the geometry of the US to the dataframe so that we can impute
|
|
# The income of neighbors. first this looks locally; if there's no local
|
|
# geojson file for all of the US, this will read it off of S3
|
|
logger.info("Reading in geojson for the country")
|
|
if not os.path.exists(
|
|
self.DATA_PATH / "census" / "geojson" / "us.json"
|
|
):
|
|
logger.info("Fetching Census data from AWS S3")
|
|
unzip_file_from_url(
|
|
CENSUS_DATA_S3_URL,
|
|
self.DATA_PATH / "tmp",
|
|
self.DATA_PATH,
|
|
)
|
|
|
|
geo_df = gpd.read_file(
|
|
self.DATA_PATH / "census" / "geojson" / "us.json"
|
|
)
|
|
df = self._merge_geojson(
|
|
df=df,
|
|
usa_geo_df=geo_df,
|
|
)
|
|
# Rename two fields.
|
|
df = df.rename(
|
|
columns={
|
|
self.MEDIAN_HOUSE_VALUE_FIELD: self.MEDIAN_HOUSE_VALUE_FIELD_NAME,
|
|
self.MEDIAN_INCOME_FIELD: self.MEDIAN_INCOME_FIELD_NAME,
|
|
}
|
|
)
|
|
|
|
# Handle null values for various fields, which are `-666666666`.
|
|
for field in [
|
|
self.MEDIAN_INCOME_FIELD_NAME,
|
|
self.MEDIAN_HOUSE_VALUE_FIELD_NAME,
|
|
]:
|
|
missing_value_count = sum(df[field] == -666666666)
|
|
logger.info(
|
|
f"There are {missing_value_count} ({int(100*missing_value_count/df[field].count())}%) values of "
|
|
+ f"`{field}` being marked as null values."
|
|
)
|
|
df[field] = df[field].replace(to_replace=-666666666, value=None)
|
|
|
|
# Calculate percent unemployment.
|
|
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
|
|
df[self.UNEMPLOYED_FIELD_NAME] = (
|
|
df[self.TOTAL_UNEMPLOYED_FIELD] / df[self.TOTAL_IN_LABOR_FORCE]
|
|
)
|
|
|
|
# Calculate linguistic isolation.
|
|
individual_limited_english_fields = [
|
|
"C16002_004E",
|
|
"C16002_007E",
|
|
"C16002_010E",
|
|
"C16002_013E",
|
|
]
|
|
|
|
df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME] = df[
|
|
individual_limited_english_fields
|
|
].sum(axis=1, skipna=True)
|
|
df[self.LINGUISTIC_ISOLATION_FIELD_NAME] = (
|
|
df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME].astype(float)
|
|
/ df["C16002_001E"]
|
|
)
|
|
|
|
# Calculate percent at different poverty thresholds
|
|
df[self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME] = (
|
|
df["C17002_002E"] + df["C17002_003E"]
|
|
) / df["C17002_001E"]
|
|
|
|
df[self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME] = (
|
|
df["C17002_002E"]
|
|
+ df["C17002_003E"]
|
|
+ df["C17002_004E"]
|
|
+ df["C17002_005E"]
|
|
) / df["C17002_001E"]
|
|
|
|
df[self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME] = (
|
|
df["C17002_002E"]
|
|
+ df["C17002_003E"]
|
|
+ df["C17002_004E"]
|
|
+ df["C17002_005E"]
|
|
+ df["C17002_006E"]
|
|
+ df["C17002_007E"]
|
|
) / df["C17002_001E"]
|
|
|
|
# Calculate educational attainment
|
|
educational_numerator_fields = [
|
|
self.EDUCATION_NO_SCHOOLING,
|
|
self.EDUCATION_NURSERY,
|
|
self.EDUCATION_KINDERGARTEN,
|
|
self.EDUCATION_FIRST,
|
|
self.EDUCATION_SECOND,
|
|
self.EDUCATION_THIRD,
|
|
self.EDUCATION_FOURTH,
|
|
self.EDUCATION_FIFTH,
|
|
self.EDUCATION_SIXTH,
|
|
self.EDUCATION_SEVENTH,
|
|
self.EDUCATION_EIGHTH,
|
|
self.EDUCATION_NINTH,
|
|
self.EDUCATION_TENTH,
|
|
self.EDUCATION_ELEVENTH,
|
|
self.EDUCATION_TWELFTH_NO_DIPLOMA,
|
|
]
|
|
|
|
df[self.HIGH_SCHOOL_ED_RAW_COUNT_FIELD] = df[
|
|
educational_numerator_fields
|
|
].sum(axis=1)
|
|
df[self.HIGH_SCHOOL_ED_FIELD] = (
|
|
df[self.HIGH_SCHOOL_ED_RAW_COUNT_FIELD]
|
|
/ df[self.EDUCATION_POPULATION_OVER_25]
|
|
)
|
|
|
|
# Calculate some demographic information.
|
|
df[self.BLACK_FIELD_NAME] = df["B02001_003E"]
|
|
df[self.AMERICAN_INDIAN_FIELD_NAME] = df["B02001_004E"]
|
|
df[self.ASIAN_FIELD_NAME] = df["B02001_005E"]
|
|
df[self.HAWAIIAN_FIELD_NAME] = df["B02001_006E"]
|
|
df[self.TWO_OR_MORE_RACES_FIELD_NAME] = df["B02001_008E"]
|
|
df[self.NON_HISPANIC_WHITE_FIELD_NAME] = df["B03002_003E"]
|
|
df[self.HISPANIC_FIELD_NAME] = df["B03003_003E"]
|
|
|
|
# Calculate demographics as percent
|
|
df[self.PERCENT_PREFIX + self.BLACK_FIELD_NAME] = (
|
|
df["B02001_003E"] / df["B02001_001E"]
|
|
)
|
|
df[self.PERCENT_PREFIX + self.AMERICAN_INDIAN_FIELD_NAME] = (
|
|
df["B02001_004E"] / df["B02001_001E"]
|
|
)
|
|
df[self.PERCENT_PREFIX + self.ASIAN_FIELD_NAME] = (
|
|
df["B02001_005E"] / df["B02001_001E"]
|
|
)
|
|
df[self.PERCENT_PREFIX + self.HAWAIIAN_FIELD_NAME] = (
|
|
df["B02001_006E"] / df["B02001_001E"]
|
|
)
|
|
df[self.PERCENT_PREFIX + self.TWO_OR_MORE_RACES_FIELD_NAME] = (
|
|
df["B02001_008E"] / df["B02001_001E"]
|
|
)
|
|
df[self.PERCENT_PREFIX + self.NON_HISPANIC_WHITE_FIELD_NAME] = (
|
|
df["B03002_003E"] / df["B03002_001E"]
|
|
)
|
|
df[self.PERCENT_PREFIX + self.HISPANIC_FIELD_NAME] = (
|
|
df["B03003_003E"] / df["B03003_001E"]
|
|
)
|
|
|
|
# Calculate college attendance and adjust low income
|
|
df[self.COLLEGE_ATTENDANCE_FIELD] = (
|
|
df[self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PUBLIC]
|
|
+ df[self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PRIVATE]
|
|
+ df[self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PUBLIC]
|
|
+ df[self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PRIVATE]
|
|
) / df[self.COLLEGE_ATTENDANCE_TOTAL_POPULATION_ASKED]
|
|
|
|
df[self.COLLEGE_NON_ATTENDANCE_FIELD] = (
|
|
1 - df[self.COLLEGE_ATTENDANCE_FIELD]
|
|
)
|
|
|
|
# we impute income for both income measures
|
|
## TODO: Convert to pydantic for clarity
|
|
logger.info("Imputing income information")
|
|
ImputeVariables = namedtuple(
|
|
"ImputeVariables", ["raw_field_name", "imputed_field_name"]
|
|
)
|
|
|
|
df = calculate_income_measures(
|
|
impute_var_named_tup_list=[
|
|
ImputeVariables(
|
|
raw_field_name=self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
|
|
imputed_field_name=self.IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
|
|
),
|
|
ImputeVariables(
|
|
raw_field_name=self.COLLEGE_ATTENDANCE_FIELD,
|
|
imputed_field_name=self.IMPUTED_COLLEGE_ATTENDANCE_FIELD,
|
|
),
|
|
],
|
|
geo_df=df,
|
|
geoid_field=self.GEOID_TRACT_FIELD_NAME,
|
|
)
|
|
|
|
logger.info("Calculating with imputed values")
|
|
|
|
df[
|
|
self.ADJUSTED_AND_IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME
|
|
] = (
|
|
df[self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME].fillna(
|
|
df[self.IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME]
|
|
)
|
|
- df[self.COLLEGE_ATTENDANCE_FIELD].fillna(
|
|
df[self.IMPUTED_COLLEGE_ATTENDANCE_FIELD]
|
|
)
|
|
).clip(
|
|
lower=0
|
|
)
|
|
|
|
# All values should have a value at this point
|
|
assert (
|
|
df[
|
|
self.ADJUSTED_AND_IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME
|
|
]
|
|
.isna()
|
|
.sum()
|
|
== 0
|
|
), "Error: not all values were filled..."
|
|
|
|
logger.info("Renaming columns...")
|
|
df = df.rename(
|
|
columns={
|
|
self.ADJUSTED_AND_IMPUTED_POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME: field_names.POVERTY_LESS_THAN_200_FPL_IMPUTED_FIELD,
|
|
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME: field_names.POVERTY_LESS_THAN_200_FPL_FIELD,
|
|
}
|
|
)
|
|
|
|
# Strip columns and save results to self.
|
|
self.df = df[self.COLUMNS_TO_KEEP]
|
|
|
|
def load(self) -> None:
|
|
logger.info("Saving Census ACS Data")
|
|
|
|
# mkdir census
|
|
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.df.to_csv(path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False)
|