mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-23 10:04:18 -08:00
* Adds dev dependencies to requirements.txt and re-runs black on codebase * Adds test and code for national risk index etl, still in progress * Removes test_data from .gitignore * Adds test data to nation_risk_index tests * Creates tests and ETL class for NRI data * Adds tests for load() and transform() methods of NationalRiskIndexETL * Updates README.md with info about the NRI dataset * Adds to dos * Moves tests and test data into a tests/ dir in national_risk_index * Moves tmp_dir for tests into data/tmp/tests/ * Promotes fixtures to conftest and relocates national_risk_index tests: The relocation of national_risk_index tests is necessary because tests can only use fixtures specified in conftests within the same package * Fixes issue with df.equals() in test_transform() * Files reformatted by black * Commit changes to other files after re-running black * Fixes unused import that caused lint checks to fail * Moves tests/ directory to app root for data_pipeline * Adds new methods to ExtractTransformLoad base class: - __init__() Initializes class attributes - _get_census_fips_codes() Loads a dataframe with the fips codes for census block group and tract - validate_init() Checks that the class was initialized correctly - validate_output() Checks that the output was loaded correctly * Adds test for ExtractTransformLoad.__init__() and base.py * Fixes failing flake8 test * Changes geo_col to geoid_col and changes is_dataset to is_census in yaml * Adds test for validate_output() * Adds remaining tests * Removes is_dataset from init method * Makes CENSUS_CSV a class attribute instead of a class global: This ensures that CENSUS_CSV is only set when the ETL class is for a non-census dataset and removes the need to overwrite the value in mock_etl fixture * Re-formats files with black and fixes broken tox tests
172 lines
6.3 KiB
Python
172 lines
6.3 KiB
Python
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import pandas as pd
|
|
import yaml
|
|
|
|
from data_pipeline.config import settings
|
|
from data_pipeline.utils import (
|
|
unzip_file_from_url,
|
|
remove_all_from_dir,
|
|
get_module_logger,
|
|
)
|
|
|
|
logger = get_module_logger(__name__)
|
|
|
|
|
|
class ExtractTransformLoad:
|
|
"""
|
|
A class used to instantiate an ETL object to retrieve and process data from
|
|
datasets.
|
|
|
|
Attributes:
|
|
DATA_PATH (pathlib.Path): Local path where all data will be stored
|
|
TMP_PATH (pathlib.Path): Local path where temporary data will be stored
|
|
GEOID_FIELD_NAME (str): The common column name for a Census Block Group identifier
|
|
GEOID_TRACT_FIELD_NAME (str): The common column name for a Census Tract identifier
|
|
"""
|
|
|
|
APP_ROOT: Path = settings.APP_ROOT
|
|
DATA_PATH: Path = APP_ROOT / "data"
|
|
TMP_PATH: Path = DATA_PATH / "tmp"
|
|
FILES_PATH: Path = settings.APP_ROOT / "files"
|
|
GEOID_FIELD_NAME: str = "GEOID10"
|
|
GEOID_TRACT_FIELD_NAME: str = "GEOID10_TRACT"
|
|
# TODO: investigate. Census says there are only 217,740 CBGs in the US. This might be from CBGs at different time periods.
|
|
EXPECTED_MAX_CENSUS_BLOCK_GROUPS: int = 220405
|
|
EXPECTED_MAX_CENSUS_TRACTS: int = 73076
|
|
|
|
def __init__(self, config_path: Path) -> None:
|
|
"""Inits the class with instance specific variables"""
|
|
|
|
# set by _get_yaml_config()
|
|
self.NAME: str = None
|
|
self.SOURCE_URL: str = None
|
|
self.GEOID_COL: str = None
|
|
self.GEO_LEVEL: str = None
|
|
self.SCORE_COLS: list = None
|
|
self.FIPS_CODES: pd.DataFrame = None
|
|
self.OUTPUT_PATH: Path = None
|
|
self.CENSUS_CSV: Path = None
|
|
|
|
self._get_yaml_config(config_path)
|
|
|
|
def _get_yaml_config(self, config_path: Path) -> None:
|
|
"""Reads the YAML configuration file for the dataset and stores
|
|
the properies in the instance (upcoming feature)"""
|
|
# parse the yaml config file
|
|
try:
|
|
with open(config_path, "r", encoding="utf-8") as file:
|
|
config = yaml.safe_load(file)
|
|
except (FileNotFoundError, yaml.YAMLError) as err:
|
|
raise err
|
|
|
|
# set dataset specific attributes
|
|
census_dir = self.DATA_PATH / "census" / "csv"
|
|
if config["is_census"]:
|
|
csv_dir = census_dir
|
|
else:
|
|
self.CENSUS_CSV = census_dir / "us.csv"
|
|
self.FIPS_CODES = self._get_census_fips_codes()
|
|
csv_dir = self.DATA_PATH / "dataset"
|
|
|
|
# parse name and set output path
|
|
name = config.get("name")
|
|
snake_name = name.replace(" ", "_").lower() # converts to snake case
|
|
output_dir = snake_name + (config.get("year") or "")
|
|
self.OUTPUT_PATH = csv_dir / output_dir / "usa.csv"
|
|
self.OUTPUT_PATH.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
# set class attributes
|
|
attrs = ["NAME", "SOURCE_URL", "GEOID_COL", "GEO_LEVEL", "SCORE_COLS"]
|
|
for attr in attrs:
|
|
setattr(self, attr, config[attr.lower()])
|
|
|
|
def check_ttl(self) -> None:
|
|
"""Checks if the ETL process can be run based on a the TLL value on the
|
|
YAML config (upcoming feature)"""
|
|
|
|
pass
|
|
|
|
def extract(
|
|
self,
|
|
source_url: str = None,
|
|
extract_path: Path = None,
|
|
verify: Optional[bool] = True,
|
|
) -> None:
|
|
"""Extract the data from a remote source. By default it provides code
|
|
to get the file from a source url, unzips it and stores it on an
|
|
extract_path."""
|
|
|
|
# this can be accessed via super().extract()
|
|
if source_url and extract_path:
|
|
unzip_file_from_url(
|
|
source_url, self.TMP_PATH, extract_path, verify=verify
|
|
)
|
|
|
|
def transform(self) -> None:
|
|
"""Transform the data extracted into a format that can be consumed by the
|
|
score generator"""
|
|
|
|
raise NotImplementedError
|
|
|
|
def load(self) -> None:
|
|
"""Saves the transformed data in the specified local data folder or remote AWS S3
|
|
bucket"""
|
|
|
|
raise NotImplementedError
|
|
|
|
def cleanup(self) -> None:
|
|
"""Clears out any files stored in the TMP folder"""
|
|
|
|
remove_all_from_dir(self.TMP_PATH)
|
|
|
|
# TODO: Add test for this
|
|
def _get_census_fips_codes(self) -> pd.DataFrame:
|
|
"""Loads FIPS codes for each Census block group and tract"""
|
|
|
|
# check that the census data exists
|
|
if not self.CENSUS_CSV.exists():
|
|
logger.info("Census data not found, please run download_csv first")
|
|
# load the census data
|
|
df = pd.read_csv(
|
|
self.CENSUS_CSV, dtype={self.GEOID_FIELD_NAME: "string"}
|
|
)
|
|
# extract Census tract FIPS code from Census block group
|
|
df[self.GEOID_TRACT_FIELD_NAME] = df[self.GEOID_FIELD_NAME].str[0:11]
|
|
return df[[self.GEOID_FIELD_NAME, self.GEOID_TRACT_FIELD_NAME]]
|
|
|
|
# TODO: Create tests
|
|
def validate_output(self) -> None:
|
|
"""Checks that the output of the ETL process adheres to the contract
|
|
expected by the score module
|
|
|
|
Contract conditions:
|
|
- Output is saved as usa.csv at the path specified by self.OUTPUT_PATH
|
|
- The output csv has a column named GEOID10 which stores each of the
|
|
Census block group FIPS codes in data/census/csv/usa.csv
|
|
- The output csv has a column named GEOID10_TRACT which stores each of
|
|
Census tract FIPS codes associated with each Census block group
|
|
- The output csv has each of the columns expected by the score and the
|
|
name and dtype of those columns match the format expected by score
|
|
"""
|
|
# read in output file
|
|
# and check that GEOID cols are present
|
|
assert self.OUTPUT_PATH.exists(), f"No file found at {self.OUTPUT_PATH}"
|
|
df_output = pd.read_csv(
|
|
self.OUTPUT_PATH,
|
|
dtype={
|
|
self.GEOID_FIELD_NAME: "string",
|
|
self.GEOID_TRACT_FIELD_NAME: "string",
|
|
},
|
|
)
|
|
|
|
# check that the GEOID cols in the output match census data
|
|
geoid_cols = [self.GEOID_FIELD_NAME, self.GEOID_TRACT_FIELD_NAME]
|
|
for col in geoid_cols:
|
|
assert col in self.FIPS_CODES.columns
|
|
assert self.FIPS_CODES.equals(df_output[geoid_cols])
|
|
|
|
# check that the score columns are in the output
|
|
for col in self.SCORE_COLS:
|
|
assert col in df_output.columns, f"{col} is missing from output"
|