j40-cejst-2/data/data-pipeline/data_pipeline/etl/base.py
Billy Daly d1273b63c5
Add ETL Contract Checks (#619)
* Adds dev dependencies to requirements.txt and re-runs black on codebase

* Adds test and code for national risk index etl, still in progress

* Removes test_data from .gitignore

* Adds test data to nation_risk_index tests

* Creates tests and ETL class for NRI data

* Adds tests for load() and transform() methods of NationalRiskIndexETL

* Updates README.md with info about the NRI dataset

* Adds to dos

* Moves tests and test data into a tests/ dir in national_risk_index

* Moves tmp_dir for tests into data/tmp/tests/

* Promotes fixtures to conftest and relocates national_risk_index tests:
The relocation of national_risk_index tests is necessary because tests 
can only use fixtures specified in conftests within the same package

* Fixes issue with df.equals() in test_transform()

* Files reformatted by black

* Commit changes to other files after re-running black

* Fixes unused import that caused lint checks to fail

* Moves tests/ directory to app root for data_pipeline

* Adds new methods to ExtractTransformLoad base class:
- __init__() Initializes class attributes
- _get_census_fips_codes() Loads a dataframe with the fips codes for 
census block group and tract
- validate_init() Checks that the class was initialized correctly
- validate_output() Checks that the output was loaded correctly

* Adds test for ExtractTransformLoad.__init__() and base.py

* Fixes failing flake8 test

* Changes geo_col to geoid_col and changes is_dataset to is_census in yaml

* Adds test for validate_output()

* Adds remaining tests

* Removes is_dataset from init method

* Makes CENSUS_CSV a class attribute instead of a class global:
This ensures that CENSUS_CSV is only set when the ETL class is for a 
non-census dataset and removes the need to overwrite the value in 
mock_etl fixture

* Re-formats files with black and fixes broken tox tests
2021-10-13 15:54:15 -04:00

172 lines
6.3 KiB
Python

from pathlib import Path
from typing import Optional
import pandas as pd
import yaml
from data_pipeline.config import settings
from data_pipeline.utils import (
unzip_file_from_url,
remove_all_from_dir,
get_module_logger,
)
logger = get_module_logger(__name__)
class ExtractTransformLoad:
"""
A class used to instantiate an ETL object to retrieve and process data from
datasets.
Attributes:
DATA_PATH (pathlib.Path): Local path where all data will be stored
TMP_PATH (pathlib.Path): Local path where temporary data will be stored
GEOID_FIELD_NAME (str): The common column name for a Census Block Group identifier
GEOID_TRACT_FIELD_NAME (str): The common column name for a Census Tract identifier
"""
APP_ROOT: Path = settings.APP_ROOT
DATA_PATH: Path = APP_ROOT / "data"
TMP_PATH: Path = DATA_PATH / "tmp"
FILES_PATH: Path = settings.APP_ROOT / "files"
GEOID_FIELD_NAME: str = "GEOID10"
GEOID_TRACT_FIELD_NAME: str = "GEOID10_TRACT"
# TODO: investigate. Census says there are only 217,740 CBGs in the US. This might be from CBGs at different time periods.
EXPECTED_MAX_CENSUS_BLOCK_GROUPS: int = 220405
EXPECTED_MAX_CENSUS_TRACTS: int = 73076
def __init__(self, config_path: Path) -> None:
"""Inits the class with instance specific variables"""
# set by _get_yaml_config()
self.NAME: str = None
self.SOURCE_URL: str = None
self.GEOID_COL: str = None
self.GEO_LEVEL: str = None
self.SCORE_COLS: list = None
self.FIPS_CODES: pd.DataFrame = None
self.OUTPUT_PATH: Path = None
self.CENSUS_CSV: Path = None
self._get_yaml_config(config_path)
def _get_yaml_config(self, config_path: Path) -> None:
"""Reads the YAML configuration file for the dataset and stores
the properies in the instance (upcoming feature)"""
# parse the yaml config file
try:
with open(config_path, "r", encoding="utf-8") as file:
config = yaml.safe_load(file)
except (FileNotFoundError, yaml.YAMLError) as err:
raise err
# set dataset specific attributes
census_dir = self.DATA_PATH / "census" / "csv"
if config["is_census"]:
csv_dir = census_dir
else:
self.CENSUS_CSV = census_dir / "us.csv"
self.FIPS_CODES = self._get_census_fips_codes()
csv_dir = self.DATA_PATH / "dataset"
# parse name and set output path
name = config.get("name")
snake_name = name.replace(" ", "_").lower() # converts to snake case
output_dir = snake_name + (config.get("year") or "")
self.OUTPUT_PATH = csv_dir / output_dir / "usa.csv"
self.OUTPUT_PATH.parent.mkdir(parents=True, exist_ok=True)
# set class attributes
attrs = ["NAME", "SOURCE_URL", "GEOID_COL", "GEO_LEVEL", "SCORE_COLS"]
for attr in attrs:
setattr(self, attr, config[attr.lower()])
def check_ttl(self) -> None:
"""Checks if the ETL process can be run based on a the TLL value on the
YAML config (upcoming feature)"""
pass
def extract(
self,
source_url: str = None,
extract_path: Path = None,
verify: Optional[bool] = True,
) -> None:
"""Extract the data from a remote source. By default it provides code
to get the file from a source url, unzips it and stores it on an
extract_path."""
# this can be accessed via super().extract()
if source_url and extract_path:
unzip_file_from_url(
source_url, self.TMP_PATH, extract_path, verify=verify
)
def transform(self) -> None:
"""Transform the data extracted into a format that can be consumed by the
score generator"""
raise NotImplementedError
def load(self) -> None:
"""Saves the transformed data in the specified local data folder or remote AWS S3
bucket"""
raise NotImplementedError
def cleanup(self) -> None:
"""Clears out any files stored in the TMP folder"""
remove_all_from_dir(self.TMP_PATH)
# TODO: Add test for this
def _get_census_fips_codes(self) -> pd.DataFrame:
"""Loads FIPS codes for each Census block group and tract"""
# check that the census data exists
if not self.CENSUS_CSV.exists():
logger.info("Census data not found, please run download_csv first")
# load the census data
df = pd.read_csv(
self.CENSUS_CSV, dtype={self.GEOID_FIELD_NAME: "string"}
)
# extract Census tract FIPS code from Census block group
df[self.GEOID_TRACT_FIELD_NAME] = df[self.GEOID_FIELD_NAME].str[0:11]
return df[[self.GEOID_FIELD_NAME, self.GEOID_TRACT_FIELD_NAME]]
# TODO: Create tests
def validate_output(self) -> None:
"""Checks that the output of the ETL process adheres to the contract
expected by the score module
Contract conditions:
- Output is saved as usa.csv at the path specified by self.OUTPUT_PATH
- The output csv has a column named GEOID10 which stores each of the
Census block group FIPS codes in data/census/csv/usa.csv
- The output csv has a column named GEOID10_TRACT which stores each of
Census tract FIPS codes associated with each Census block group
- The output csv has each of the columns expected by the score and the
name and dtype of those columns match the format expected by score
"""
# read in output file
# and check that GEOID cols are present
assert self.OUTPUT_PATH.exists(), f"No file found at {self.OUTPUT_PATH}"
df_output = pd.read_csv(
self.OUTPUT_PATH,
dtype={
self.GEOID_FIELD_NAME: "string",
self.GEOID_TRACT_FIELD_NAME: "string",
},
)
# check that the GEOID cols in the output match census data
geoid_cols = [self.GEOID_FIELD_NAME, self.GEOID_TRACT_FIELD_NAME]
for col in geoid_cols:
assert col in self.FIPS_CODES.columns
assert self.FIPS_CODES.equals(df_output[geoid_cols])
# check that the score columns are in the output
for col in self.SCORE_COLS:
assert col in df_output.columns, f"{col} is missing from output"