j40-cejst-2/data/data-pipeline/data_pipeline/ipython/geojson_compare_tiles.ipynb
Travis Newby a27ca46b1d
Update dependencies to fix safety check failures (#2142)
* Update dependencies

Update dependencies causing safety check to fail

* Remove nb_black from jupyter notebooks

Because of the build issue on M1 macs, nb_black was removed as a dev dependency. This change removes the lines referencing nb_black (%load_ext lab_black) from all jupyter notebooks.
2023-02-02 16:43:59 -06:00

506 lines
12 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "27da604f",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import pandas as pd\n",
"import geopandas as gpd\n",
"\n",
"# Read in the above json file\n",
"nation = gpd.read_file(\"/Users/vims/Downloads/usa-high-1822-637b.json\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7b7083fd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 None\n",
"1 None\n",
"2 None\n",
"3 None\n",
"4 None\n",
" ... \n",
"74129 None\n",
"74130 None\n",
"74131 None\n",
"74132 None\n",
"74133 None\n",
"Name: FUDS_RAW, Length: 74134, dtype: object"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation[\"FUDS_RAW\"]"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "117477e6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GEOID10</th>\n",
" <th>SF</th>\n",
" <th>CF</th>\n",
" <th>HRS_ET</th>\n",
" <th>AML_ET</th>\n",
" <th>AML_RAW</th>\n",
" <th>FUDS_ET</th>\n",
" <th>FUDS_RAW</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>27139080202</td>\n",
" <td>Minnesota</td>\n",
" <td>Scott County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>27139080204</td>\n",
" <td>Minnesota</td>\n",
" <td>Scott County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>27139080100</td>\n",
" <td>Minnesota</td>\n",
" <td>Scott County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>27139080302</td>\n",
" <td>Minnesota</td>\n",
" <td>Scott County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>27139080400</td>\n",
" <td>Minnesota</td>\n",
" <td>Scott County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74129</th>\n",
" <td>16005001601</td>\n",
" <td>Idaho</td>\n",
" <td>Bannock County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74130</th>\n",
" <td>16005001300</td>\n",
" <td>Idaho</td>\n",
" <td>Bannock County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74131</th>\n",
" <td>16005001000</td>\n",
" <td>Idaho</td>\n",
" <td>Bannock County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74132</th>\n",
" <td>16005000900</td>\n",
" <td>Idaho</td>\n",
" <td>Bannock County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74133</th>\n",
" <td>16005000800</td>\n",
" <td>Idaho</td>\n",
" <td>Bannock County</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>74134 rows × 8 columns</p>\n",
"</div>"
],
"text/plain": [
" GEOID10 SF CF HRS_ET AML_ET AML_RAW FUDS_ET \\\n",
"0 27139080202 Minnesota Scott County None False None False \n",
"1 27139080204 Minnesota Scott County None False None False \n",
"2 27139080100 Minnesota Scott County None False None False \n",
"3 27139080302 Minnesota Scott County None False None False \n",
"4 27139080400 Minnesota Scott County None False None False \n",
"... ... ... ... ... ... ... ... \n",
"74129 16005001601 Idaho Bannock County None False None False \n",
"74130 16005001300 Idaho Bannock County None False None False \n",
"74131 16005001000 Idaho Bannock County None False None False \n",
"74132 16005000900 Idaho Bannock County None False None False \n",
"74133 16005000800 Idaho Bannock County None False None False \n",
"\n",
" FUDS_RAW \n",
"0 None \n",
"1 None \n",
"2 None \n",
"3 None \n",
"4 None \n",
"... ... \n",
"74129 None \n",
"74130 None \n",
"74131 None \n",
"74132 None \n",
"74133 None \n",
"\n",
"[74134 rows x 8 columns]"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind = nation[\n",
" [\n",
" \"GEOID10\",\n",
" \"SF\",\n",
" \"CF\",\n",
" \"HRS_ET\",\n",
" \"AML_ET\",\n",
" \"AML_RAW\",\n",
" \"FUDS_ET\",\n",
" \"FUDS_RAW\",\n",
" ]\n",
"]\n",
"nation_new_ind"
]
},
{
"cell_type": "code",
"execution_count": 68,
"id": "0f37acf4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([None, '0', '1'], dtype=object)"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"HRS_ET\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "4ae865ae",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 8843\n",
"1 4045\n",
"Name: HRS_ET, dtype: int64"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"HRS_ET\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "2f0d29db",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([False, True])"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"AML_ET\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "646b3754",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False 72100\n",
"True 2034\n",
"Name: AML_ET, dtype: int64"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"AML_ET\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "0571df6d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([None, '1'], dtype=object)"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"AML_RAW\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "171fa3c9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 2034\n",
"Name: AML_RAW, dtype: int64"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"AML_RAW\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "370b0769",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([False, True])"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"FUDS_ET\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "f8afb668",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False 72056\n",
"True 2078\n",
"Name: FUDS_ET, dtype: int64"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"FUDS_ET\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "f2e3b78a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([None, '0', '1'], dtype=object)"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"FUDS_RAW\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "b722e802",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 3170\n",
"1 2078\n",
"Name: FUDS_RAW, dtype: int64"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nation_new_ind[\"FUDS_RAW\"].value_counts()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}