j40-cejst-2/score/ipython/census_etl.ipynb
Lucas Merrill Brown 589ec483e3
Ingest census data directly, add unemployment to the score (#214)
* Ingest two data sources and add to score

Co-authored-by: Jorge Escobar <jorge.e.escobar@omb.eop.gov>
2021-06-24 14:11:07 -07:00

152 lines
4.2 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "0491828b",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import censusdata\n",
"import csv\n",
"from pathlib import Path\n",
"import os\n",
"\n",
"ACS_YEAR = 2019\n",
"\n",
"DATA_PATH = Path.cwd().parent / \"data\"\n",
"FIPS_CSV_PATH = DATA_PATH / \"fips_states_2010.csv\"\n",
"OUTPUT_PATH = DATA_PATH / \"dataset\" / f\"census_acs_{ACS_YEAR}\"\n",
"\n",
"GEOID_FIELD_NAME = \"GEOID10\"\n",
"UNEMPLOYED_FIELD_NAME = \"Unemployed Civilians (fraction)\"\n",
"\n",
"# Some display settings to make pandas outputs more readable.\n",
"pd.set_option(\"display.expand_frame_repr\", False)\n",
"pd.set_option(\"display.precision\", 2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "654f25a1",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Following the tutorial at https://jtleider.github.io/censusdata/example1.html.\n",
"# Full list of fields is at https://www2.census.gov/programs-surveys/acs/summary_file/2019/documentation/user_tools/ACS2019_Table_Shells.xlsx\n",
"censusdata.printtable(censusdata.censustable(src=\"acs5\", year=ACS_YEAR, table=\"B23025\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8999cea4",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"def fips_from_censusdata_censusgeo(censusgeo: censusdata.censusgeo) -> str:\n",
" \"\"\"Create a FIPS code from the proprietary censusgeo index.\"\"\"\n",
" fips = \"\".join([value for (key, value) in censusgeo.params()])\n",
" return fips\n",
"\n",
"\n",
"dfs = []\n",
"with open(FIPS_CSV_PATH) as csv_file:\n",
" csv_reader = csv.reader(csv_file, delimiter=\",\")\n",
" line_count = 0\n",
"\n",
" for row in csv_reader:\n",
" if line_count == 0:\n",
" line_count += 1\n",
" else:\n",
" fips = row[0].strip()\n",
" print(f\"Downloading data for state/territory with FIPS code {fips}\")\n",
"\n",
" dfs.append(\n",
" censusdata.download(\n",
" src=\"acs5\",\n",
" year=ACS_YEAR,\n",
" geo=censusdata.censusgeo(\n",
" [(\"state\", fips), (\"county\", \"*\"), (\"block group\", \"*\")]\n",
" ),\n",
" var=[\"B23025_005E\", \"B23025_003E\"],\n",
" )\n",
" )\n",
"\n",
"df = pd.concat(dfs)\n",
"\n",
"df[GEOID_FIELD_NAME] = df.index.to_series().apply(func=fips_from_censusdata_censusgeo)\n",
"\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "803cce31",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"# Calculate percent unemployment.\n",
"# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.\n",
"df[UNEMPLOYED_FIELD_NAME] = df.B23025_005E / df.B23025_003E\n",
"\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a269bb1",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# mkdir census\n",
"OUTPUT_PATH.mkdir(parents=True, exist_ok=True)\n",
"\n",
"columns_to_include = [GEOID_FIELD_NAME, UNEMPLOYED_FIELD_NAME]\n",
"\n",
"df[columns_to_include].to_csv(path_or_buf=OUTPUT_PATH / \"usa.csv\", index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91932af5",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}