mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-24 10:34:18 -08:00
* fixing dependency issue * fixing more dependencies * including fraction of state AMI * wip * nitpick whitespace * etl working now * wip on scoring * fix rename error * reducing metrics * fixing score f * fixing readme * adding dependency * passing tests; * linting/black * removing unnecessary sample * fixing error * adding verify flag on etl/base Co-authored-by: Jorge Escobar <jorge.e.escobar@omb.eop.gov>
170 lines
5.7 KiB
Python
170 lines
5.7 KiB
Python
import pandas as pd
|
|
import censusdata
|
|
|
|
from data_pipeline.etl.base import ExtractTransformLoad
|
|
from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes
|
|
from data_pipeline.utils import get_module_logger
|
|
from data_pipeline.config import settings
|
|
|
|
logger = get_module_logger(__name__)
|
|
|
|
|
|
class CensusACSETL(ExtractTransformLoad):
|
|
def __init__(self):
|
|
self.ACS_YEAR = 2019
|
|
self.OUTPUT_PATH = (
|
|
self.DATA_PATH / "dataset" / f"census_acs_{self.ACS_YEAR}"
|
|
)
|
|
self.UNEMPLOYED_FIELD_NAME = "Unemployed civilians (percent)"
|
|
self.LINGUISTIC_ISOLATION_FIELD_NAME = "Linguistic isolation (percent)"
|
|
self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME = (
|
|
"Linguistic isolation (total)"
|
|
)
|
|
self.LINGUISTIC_ISOLATION_FIELDS = [
|
|
"C16002_001E",
|
|
"C16002_004E",
|
|
"C16002_007E",
|
|
"C16002_010E",
|
|
"C16002_013E",
|
|
]
|
|
self.MEDIAN_INCOME_FIELD = "B19013_001E"
|
|
self.MEDIAN_INCOME_FIELD_NAME = (
|
|
"Median household income in the past 12 months"
|
|
)
|
|
self.MEDIAN_INCOME_STATE_FIELD_NAME = "Median household income (State)"
|
|
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME = (
|
|
"Median household income (% of state median household income)"
|
|
)
|
|
self.STATE_GEOID_FIELD_NAME = "GEOID2"
|
|
self.df: pd.DataFrame
|
|
self.state_median_income_df: pd.DataFrame
|
|
|
|
self.STATE_MEDIAN_INCOME_FTP_URL = (
|
|
settings.AWS_JUSTICE40_DATASOURCES_URL
|
|
+ "/2015_to_2019_state_median_income.zip"
|
|
)
|
|
self.STATE_MEDIAN_INCOME_FILE_PATH = (
|
|
self.TMP_PATH / "2015_to_2019_state_median_income.csv"
|
|
)
|
|
|
|
def _fips_from_censusdata_censusgeo(
|
|
self, censusgeo: censusdata.censusgeo
|
|
) -> str:
|
|
"""Create a FIPS code from the proprietary censusgeo index."""
|
|
fips = "".join([value for (key, value) in censusgeo.params()])
|
|
return fips
|
|
|
|
def extract(self) -> None:
|
|
# Extract state median income
|
|
super().extract(
|
|
self.STATE_MEDIAN_INCOME_FTP_URL,
|
|
self.TMP_PATH,
|
|
)
|
|
dfs = []
|
|
for fips in get_state_fips_codes(self.DATA_PATH):
|
|
logger.info(
|
|
f"Downloading data for state/territory with FIPS code {fips}"
|
|
)
|
|
|
|
dfs.append(
|
|
censusdata.download(
|
|
src="acs5",
|
|
year=self.ACS_YEAR,
|
|
geo=censusdata.censusgeo(
|
|
[("state", fips), ("county", "*"), ("block group", "*")]
|
|
),
|
|
var=[
|
|
# Emploment fields
|
|
"B23025_005E",
|
|
"B23025_003E",
|
|
self.MEDIAN_INCOME_FIELD,
|
|
]
|
|
+ self.LINGUISTIC_ISOLATION_FIELDS,
|
|
)
|
|
)
|
|
|
|
self.df = pd.concat(dfs)
|
|
|
|
self.df[self.GEOID_FIELD_NAME] = self.df.index.to_series().apply(
|
|
func=self._fips_from_censusdata_censusgeo
|
|
)
|
|
|
|
self.state_median_income_df = pd.read_csv(
|
|
# TODO: Replace with reading from S3.
|
|
filepath_or_buffer=self.STATE_MEDIAN_INCOME_FILE_PATH,
|
|
dtype={self.STATE_GEOID_FIELD_NAME: "string"},
|
|
)
|
|
|
|
def transform(self) -> None:
|
|
logger.info("Starting Census ACS Transform")
|
|
|
|
# Rename median income
|
|
self.df[self.MEDIAN_INCOME_FIELD_NAME] = self.df[
|
|
self.MEDIAN_INCOME_FIELD
|
|
]
|
|
|
|
# TODO: handle null values for CBG median income, which are `-666666666`.
|
|
|
|
# Join state data on CBG data:
|
|
self.df[self.STATE_GEOID_FIELD_NAME] = (
|
|
self.df[self.GEOID_FIELD_NAME].astype(str).str[0:2]
|
|
)
|
|
self.df = self.df.merge(
|
|
self.state_median_income_df,
|
|
how="left",
|
|
on=self.STATE_GEOID_FIELD_NAME,
|
|
)
|
|
|
|
# Calculate the income of the block group as a fraction of the state income:
|
|
self.df[self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME] = (
|
|
self.df[self.MEDIAN_INCOME_FIELD_NAME]
|
|
/ self.df[self.MEDIAN_INCOME_STATE_FIELD_NAME]
|
|
)
|
|
|
|
# Calculate percent unemployment.
|
|
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
|
|
self.df[self.UNEMPLOYED_FIELD_NAME] = (
|
|
self.df.B23025_005E / self.df.B23025_003E
|
|
)
|
|
|
|
# Calculate linguistic isolation.
|
|
individual_limited_english_fields = [
|
|
"C16002_004E",
|
|
"C16002_007E",
|
|
"C16002_010E",
|
|
"C16002_013E",
|
|
]
|
|
|
|
self.df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME] = self.df[
|
|
individual_limited_english_fields
|
|
].sum(axis=1, skipna=True)
|
|
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME] = (
|
|
self.df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME].astype(float)
|
|
/ self.df["C16002_001E"]
|
|
)
|
|
|
|
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME].describe()
|
|
|
|
def load(self) -> None:
|
|
logger.info("Saving Census ACS Data")
|
|
|
|
# mkdir census
|
|
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
|
|
|
columns_to_include = [
|
|
self.GEOID_FIELD_NAME,
|
|
self.UNEMPLOYED_FIELD_NAME,
|
|
self.LINGUISTIC_ISOLATION_FIELD_NAME,
|
|
self.MEDIAN_INCOME_FIELD_NAME,
|
|
self.MEDIAN_INCOME_STATE_FIELD_NAME,
|
|
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME,
|
|
]
|
|
|
|
self.df[columns_to_include].to_csv(
|
|
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
|
)
|
|
|
|
def validate(self) -> None:
|
|
logger.info("Validating Census ACS Data")
|
|
|
|
pass
|