mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-23 10:04:18 -08:00
* Adds a substantially refactored ETL test to the National Risk Index, to be used as a model for other tests
134 lines
3.5 KiB
Python
134 lines
3.5 KiB
Python
import importlib
|
|
|
|
from data_pipeline.etl.score.etl_score import ScoreETL
|
|
from data_pipeline.etl.score.etl_score_geo import GeoScoreETL
|
|
from data_pipeline.etl.score.etl_score_post import PostScoreETL
|
|
|
|
from . import constants
|
|
|
|
|
|
def get_datasets_to_run(dataset_to_run: str):
|
|
"""Returns a list of appropriate datasets to run given input args
|
|
|
|
Args:
|
|
dataset_to_run (str): Run a specific ETL process. If missing, runs all processes (optional)
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
dataset_list = constants.DATASET_LIST
|
|
etls_to_search = dataset_list + [constants.CENSUS_INFO]
|
|
|
|
if dataset_to_run:
|
|
dataset_element = next(
|
|
(item for item in etls_to_search if item["name"] == dataset_to_run),
|
|
None,
|
|
)
|
|
if not dataset_element:
|
|
raise ValueError("Invalid dataset name")
|
|
else:
|
|
# reset the list to just the dataset
|
|
dataset_list = [dataset_element]
|
|
return dataset_list
|
|
|
|
|
|
def etl_runner(dataset_to_run: str = None) -> None:
|
|
"""Runs all etl processes or a specific one
|
|
|
|
Args:
|
|
dataset_to_run (str): Run a specific ETL process. If missing, runs all processes (optional)
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
dataset_list = get_datasets_to_run(dataset_to_run)
|
|
|
|
# Run the ETLs for the dataset_list
|
|
for dataset in dataset_list:
|
|
etl_module = importlib.import_module(
|
|
f"data_pipeline.etl.sources.{dataset['module_dir']}.etl"
|
|
)
|
|
etl_class = getattr(etl_module, dataset["class_name"])
|
|
etl_instance = etl_class()
|
|
|
|
# run extract
|
|
etl_instance.extract()
|
|
|
|
# run transform
|
|
etl_instance.transform()
|
|
|
|
# run load
|
|
etl_instance.load()
|
|
|
|
# run validate
|
|
etl_instance.validate()
|
|
|
|
# cleanup
|
|
etl_instance.cleanup()
|
|
|
|
# update the front end JSON/CSV of list of data sources
|
|
pass
|
|
|
|
|
|
def score_generate() -> None:
|
|
"""Generates the score and saves it on the local data directory
|
|
|
|
Args:
|
|
None
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
# Score Gen
|
|
score_gen = ScoreETL()
|
|
score_gen.extract()
|
|
score_gen.transform()
|
|
score_gen.load()
|
|
|
|
|
|
def score_post(data_source: str = "local") -> None:
|
|
"""Posts the score files to the local directory
|
|
|
|
Args:
|
|
data_source (str): Source for the census data (optional)
|
|
Options:
|
|
- local (default): fetch census data from the local data directory
|
|
- aws: fetch census from AWS S3 J40 data repository
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
# Post Score Processing
|
|
score_post = PostScoreETL(data_source=data_source)
|
|
score_post.extract()
|
|
score_post.transform()
|
|
score_post.load()
|
|
score_post.cleanup()
|
|
|
|
|
|
def score_geo(data_source: str = "local") -> None:
|
|
"""Generates the geojson files with score data baked in
|
|
|
|
Args:
|
|
data_source (str): Source for the census data (optional)
|
|
Options:
|
|
- local (default): fetch census data from the local data directory
|
|
- aws: fetch census from AWS S3 J40 data repository
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
# Score Geo
|
|
score_geo = GeoScoreETL(data_source=data_source)
|
|
score_geo.extract()
|
|
score_geo.transform()
|
|
score_geo.load()
|
|
|
|
|
|
def _find_dataset_index(dataset_list, key, value):
|
|
for i, element in enumerate(dataset_list):
|
|
if element[key] == value:
|
|
return i
|
|
return -1
|