j40-cejst-2/data/data-pipeline/data_pipeline/ipython/census_explore.ipynb
Lucas Merrill Brown 05ebf9b48c
Add median house value to Definition L (#882)
* Added house value to ETL

* Adding house value to score formula and comp tool
2021-11-13 10:29:23 -05:00

148 lines
4.1 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "4899d2ef",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import censusdata\n",
"import csv\n",
"from pathlib import Path\n",
"import os\n",
"import sys\n",
"\n",
"module_path = os.path.abspath(os.path.join(\"../..\"))\n",
"if module_path not in sys.path:\n",
" sys.path.append(module_path)\n",
"\n",
"from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes\n",
"\n",
"\n",
"ACS_YEAR = 2019\n",
"\n",
"DATA_PATH = Path.cwd().parent / \"data\"\n",
"FIPS_CSV_PATH = DATA_PATH / \"fips_states_2010.csv\"\n",
"\n",
"GEOID_FIELD_NAME = \"GEOID10\"\n",
"UNEMPLOYED_FIELD_NAME = \"Unemployed Civilians (fraction)\"\n",
"\n",
"# Some display settings to make pandas outputs more readable.\n",
"pd.set_option(\"display.expand_frame_repr\", False)\n",
"pd.set_option(\"display.precision\", 2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4dd8feec",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"# Following the tutorial at https://jtleider.github.io/censusdata/example1.html.\n",
"# Full list of fields is at https://www2.census.gov/programs-surveys/acs/summary_file/2019/documentation/user_tools/ACS2019_Table_Shells.xlsx\n",
"censusdata.printtable(\n",
" censusdata.censustable(src=\"acs5\", year=ACS_YEAR, table=\"B25077\")\n",
")\n",
"\n",
"# censusdata.search(src=\"acs5\", year=ACS_YEAR, field='label', criterion='Owner-occupied units!!Median')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b40afd3",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"def fips_from_censusdata_censusgeo(censusgeo: censusdata.censusgeo) -> str:\n",
" \"\"\"Create a FIPS code from the proprietary censusgeo index.\"\"\"\n",
" fips = \"\".join([value for (key, value) in censusgeo.params()])\n",
" return fips\n",
"\n",
"\n",
"dfs = []\n",
"for fips in get_state_fips_codes(DATA_PATH):\n",
" print(f\"Fetching data for fips {fips}\")\n",
" dfs.append(\n",
" censusdata.download(\n",
" src=\"acs5\",\n",
" year=ACS_YEAR,\n",
" geo=censusdata.censusgeo(\n",
" [\n",
" (\"state\", fips)\n",
" # , (\"county\", \"*\"), (\"block group\", \"*\")\n",
" ]\n",
" ),\n",
" var=[\"B23025_005E\", \"B23025_003E\", \"B19013_001E\"],\n",
" )\n",
" )\n",
"\n",
"df = pd.concat(dfs)\n",
"\n",
"df[GEOID_FIELD_NAME] = df.index.to_series().apply(\n",
" func=fips_from_censusdata_censusgeo\n",
")\n",
"\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "caa0b502",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"columns_to_include = [\"GEOID2\", \"Median household income (State)\"]\n",
"\n",
"df.rename(\n",
" columns={\n",
" \"GEOID10\": \"GEOID2\",\n",
" \"B19013_001E\": \"Median household income (State)\",\n",
" },\n",
" inplace=True,\n",
")\n",
"\n",
"# df[columns_to_include].to_csv(path_or_buf= \"/Users/lucas/Documents/usds/repos/justice40-tool/data/data-pipeline/data_pipeline/data/needs_to_be_moved_to_s3/2014_to_2019_state_median_income.csv\", index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2bddf6a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}