j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/maryland_ejscreen/etl.py
Travis Newby 03a6d3c660
User Story 2152 – Clean up logging (#2155)
Update logging messages and message consistency

This update includes changes to the level of many log messages. Rather than everything being logged at the info level, it differentiates between debug, info, warning, and error messages. It also changes the default log level to info to avoid much of the noise previously in the logs.

It also removes many extra log messages, and adds additional decorators at the beginning of each pipeline run.
2023-02-08 13:08:55 -06:00

110 lines
4.2 KiB
Python

from glob import glob
import geopandas as gpd
import pandas as pd
from data_pipeline.config import settings
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.score import field_names
from data_pipeline.utils import get_module_logger
logger = get_module_logger(__name__)
class MarylandEJScreenETL(ExtractTransformLoad):
"""Maryland EJSCREEN class that ingests dataset represented
here: https://p1.cgis.umd.edu/mdejscreen/help.html
Please see the README in this module for further details.
"""
def __init__(self):
self.MARYLAND_EJSCREEN_URL = (
settings.AWS_JUSTICE40_DATASOURCES_URL + "/MD_EJScreen.zip"
)
self.SHAPE_FILES_PATH = self.get_tmp_path() / "mdejscreen"
self.OUTPUT_CSV_PATH = self.DATA_PATH / "dataset" / "maryland_ejscreen"
self.COLUMNS_TO_KEEP = [
self.GEOID_TRACT_FIELD_NAME,
field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD,
]
self.df: pd.DataFrame
def extract(self) -> None:
logger.debug("Downloading 207MB Maryland EJSCREEN Data")
super().extract(
self.MARYLAND_EJSCREEN_URL,
self.get_tmp_path(),
)
def transform(self) -> None:
list_of_files = list(glob(str(self.SHAPE_FILES_PATH) + "/*.shp"))
# Ignore counties becauses this is not the level of measurement
# that is consistent with our current scoring and ranking methodology.
dfs_list = [
gpd.read_file(f)
for f in list_of_files
if not f.endswith("CountiesEJScore.shp")
]
# Set the Census tract as the index and drop the geometry column
# that produces the census tract boundaries.
# The latter is because Geopandas raises an exception if there
# are duplicate geometry columns.
# Moreover, since the unit of measurement is at the tract level
# we can consistantly merge this with other datasets
dfs_list = [
df.set_index("Census_Tra").drop("geometry", axis=1)
for df in dfs_list
]
# pylint: disable=unsubscriptable-object
self.df = gpd.GeoDataFrame(pd.concat(dfs_list, axis=1))
# Reset index so that we no longer have the tract as our index
self.df = self.df.reset_index()
# coerce GEODID into integer
# The only reason why this is done is because Maryland's GEODID's start with
# "24". This is NOT standard practice and should never be done as rightly pointed
# out by Lucas: "converting to int would lose the leading 0 and make this geoid invalid".
# pylint: disable=unsupported-assignment-operation, unsubscriptable-object
self.df["Census_Tra"] = (self.df["Census_Tra"]).astype(int)
# Drop the 10 census tracts that are zero: please see here:
# https://github.com/usds/justice40-tool/issues/239#issuecomment-995821572
self.df = self.df[self.df["Census_Tra"] != 0]
# Rename columns
self.df.rename(
columns={
"Census_Tra": self.GEOID_TRACT_FIELD_NAME,
"EJScore": field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
},
inplace=True,
)
# This computational step will be used to establish a
# threshold for burden (line 104)
self.df[
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX
] = self.df[field_names.MARYLAND_EJSCREEN_SCORE_FIELD].rank(
pct=True, ascending=True
)
# An arbitrarily chosen threshold is used in the comparison tool output
self.df[field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD] = (
self.df[
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX
]
>= 0.75
)
def load(self) -> None:
# write maryland tracts to csv
self.OUTPUT_CSV_PATH.mkdir(parents=True, exist_ok=True)
self.df[self.COLUMNS_TO_KEEP].to_csv(
self.OUTPUT_CSV_PATH / "maryland.csv", index=False
)