mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-23 01:54:18 -08:00
* running black throughout * adding housing * hud housing etl working * got score d and e working * updating scoring comparison * minor fixes * small changes * small comments
203 lines
5.6 KiB
Text
203 lines
5.6 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0491828b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import censusdata\n",
|
|
"import csv\n",
|
|
"from pathlib import Path\n",
|
|
"import os\n",
|
|
"import sys\n",
|
|
"\n",
|
|
"module_path = os.path.abspath(os.path.join(\"..\"))\n",
|
|
"if module_path not in sys.path:\n",
|
|
" sys.path.append(module_path)\n",
|
|
"\n",
|
|
"from etl.sources.census.etl_utils import get_state_fips_codes\n",
|
|
"\n",
|
|
"ACS_YEAR = 2019\n",
|
|
"\n",
|
|
"DATA_PATH = Path.cwd().parent / \"data\"\n",
|
|
"OUTPUT_PATH = DATA_PATH / \"dataset\" / f\"census_acs_{ACS_YEAR}\"\n",
|
|
"\n",
|
|
"GEOID_FIELD_NAME = \"GEOID10\"\n",
|
|
"UNEMPLOYED_FIELD_NAME = \"Unemployed civilians (percent)\"\n",
|
|
"LINGUISTIC_ISOLATION_FIELD_NAME = \"Linguistic isolation (percent)\"\n",
|
|
"LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME = \"Linguistic isolation (total)\"\n",
|
|
"\n",
|
|
"LINGUISTIC_ISOLATION_FIELDS = [\n",
|
|
" \"C16002_001E\",\n",
|
|
" \"C16002_004E\",\n",
|
|
" \"C16002_007E\",\n",
|
|
" \"C16002_010E\",\n",
|
|
" \"C16002_013E\",\n",
|
|
"]\n",
|
|
"\n",
|
|
"# Some display settings to make pandas outputs more readable.\n",
|
|
"pd.set_option(\"display.expand_frame_repr\", False)\n",
|
|
"pd.set_option(\"display.precision\", 2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "64df0b63",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# For variable discovery, if necessary.\n",
|
|
"# censusdata.search(\n",
|
|
"# \"acs5\", 2019, \"label\", \"Limited English speaking\"\n",
|
|
"# )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "654f25a1",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Following the tutorial at https://jtleider.github.io/censusdata/example1.html.\n",
|
|
"# Full list of fields is at https://www2.census.gov/programs-surveys/acs/summary_file/2019/documentation/user_tools/ACS2019_Table_Shells.xlsx\n",
|
|
"censusdata.printtable(censusdata.censustable(src=\"acs5\", year=ACS_YEAR, table=\"B23025\"))\n",
|
|
"censusdata.printtable(censusdata.censustable(src=\"acs5\", year=ACS_YEAR, table=\"C16002\"))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8999cea4",
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def fips_from_censusdata_censusgeo(censusgeo: censusdata.censusgeo) -> str:\n",
|
|
" \"\"\"Create a FIPS code from the proprietary censusgeo index.\"\"\"\n",
|
|
" fips = \"\".join([value for (key, value) in censusgeo.params()])\n",
|
|
" return fips\n",
|
|
"\n",
|
|
"\n",
|
|
"dfs = []\n",
|
|
"for fips in get_state_fips_codes(DATA_PATH):\n",
|
|
" print(f\"Downloading data for state/territory with FIPS code {fips}\")\n",
|
|
"\n",
|
|
" dfs.append(\n",
|
|
" censusdata.download(\n",
|
|
" src=\"acs5\",\n",
|
|
" year=ACS_YEAR,\n",
|
|
" geo=censusdata.censusgeo(\n",
|
|
" [(\"state\", fips), (\"county\", \"*\"), (\"block group\", \"*\")]\n",
|
|
" ),\n",
|
|
" var=[\n",
|
|
" # Emploment fields\n",
|
|
" \"B23025_005E\",\n",
|
|
" \"B23025_003E\",\n",
|
|
" ]\n",
|
|
" + LINGUISTIC_ISOLATION_FIELDS,\n",
|
|
" )\n",
|
|
" )\n",
|
|
"\n",
|
|
"\n",
|
|
"df = pd.concat(dfs)\n",
|
|
"\n",
|
|
"df[GEOID_FIELD_NAME] = df.index.to_series().apply(func=fips_from_censusdata_censusgeo)\n",
|
|
"\n",
|
|
"df.head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "803cce31",
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Calculate percent unemployment.\n",
|
|
"# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.\n",
|
|
"df[UNEMPLOYED_FIELD_NAME] = df.B23025_005E / df.B23025_003E\n",
|
|
"\n",
|
|
"df[UNEMPLOYED_FIELD_NAME].describe()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e475472c",
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Calculate linguistic isolation.\n",
|
|
"individual_limited_english_fields = [\n",
|
|
" \"C16002_004E\",\n",
|
|
" \"C16002_007E\",\n",
|
|
" \"C16002_010E\",\n",
|
|
" \"C16002_013E\",\n",
|
|
"]\n",
|
|
"\n",
|
|
"df[LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME] = df[individual_limited_english_fields].sum(\n",
|
|
" axis=1, skipna=True\n",
|
|
")\n",
|
|
"df[LINGUISTIC_ISOLATION_FIELD_NAME] = (\n",
|
|
" df[LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME].astype(float) / df[\"C16002_001E\"]\n",
|
|
")\n",
|
|
"\n",
|
|
"df[LINGUISTIC_ISOLATION_FIELD_NAME].describe()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2a269bb1",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# mkdir census\n",
|
|
"OUTPUT_PATH.mkdir(parents=True, exist_ok=True)\n",
|
|
"\n",
|
|
"columns_to_include = [\n",
|
|
" GEOID_FIELD_NAME,\n",
|
|
" UNEMPLOYED_FIELD_NAME,\n",
|
|
" LINGUISTIC_ISOLATION_FIELD_NAME,\n",
|
|
"]\n",
|
|
"\n",
|
|
"df[columns_to_include].to_csv(path_or_buf=OUTPUT_PATH / \"usa.csv\", index=False)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|