j40-cejst-2/data/data-pipeline/data_pipeline/score/utils.py
Lucas Merrill Brown 6e6223cd5e
Issue 105: Configure and run black and other pre-commit hooks (clean branch) (#1962)
* Configure and run `black` and other pre-commit hooks

Co-authored-by: matt bowen <matthew.r.bowen@omb.eop.gov>
2022-10-04 18:08:47 -04:00

56 lines
1.9 KiB
Python

"""Utilities to help generate the score."""
import data_pipeline.score.field_names as field_names
import geopandas as gpd
import pandas as pd
from data_pipeline.etl.sources.geo_utils import get_tract_geojson
from data_pipeline.utils import get_module_logger
# XXX: @jorge I am torn about the coupling that importing from
# etl.sources vs keeping the code DRY. Thoughts?
logger = get_module_logger(__name__)
def calculate_tract_adjacency_scores(
df: pd.DataFrame, score_column: str
) -> pd.DataFrame:
"""Calculate the mean score of each tract in df based on its neighbors
Args:
df (pandas.DataFrame): A dataframe with at least the following columns:
* field_names.GEOID_TRACT_FIELD
* score_column
score_column (str): The name of the column that contains the scores
to average
Returns:
df (pandas.DataFrame): A dataframe with two columns:
* field_names.GEOID_TRACT_FIELD
* {score_column}_ADJACENT_MEAN, which is the average of score_column for
each tract that touches the tract identified
in field_names.GEOID_TRACT_FIELD
"""
ORIGINAL_TRACT = "ORIGINAL_TRACT"
logger.debug("Calculating tract adjacency scores")
tract_data = get_tract_geojson()
df: gpd.GeoDataFrame = tract_data.merge(
df, on=field_names.GEOID_TRACT_FIELD
)
df = df.rename(columns={field_names.GEOID_TRACT_FIELD: ORIGINAL_TRACT})
logger.debug("Perfoming spatial join to find all adjacent tracts")
adjacent_tracts: gpd.GeoDataFrame = df.sjoin(
tract_data, predicate="touches"
)
logger.debug("Calculating means based on adjacency")
return (
adjacent_tracts.groupby(field_names.GEOID_TRACT_FIELD)[[score_column]]
.mean()
.reset_index()
.rename(
columns={
score_column: f"{score_column}{field_names.ADJACENCY_INDEX_SUFFIX}",
}
)
)