{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "dc8a46ce-3dbf-49ee-a0ab-1449fd6d176d",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import seaborn as sns\n",
"import sys\n",
"from pathlib import Path\n",
"import matplotlib.pyplot as plt\n",
"\n",
"sys.path.append(\"../../data_pipeline/\")"
]
},
{
"cell_type": "markdown",
"id": "ebdcdf20-08b6-48e6-b28b-4bebbb3655c2",
"metadata": {},
"source": [
"# Examining agricultural loss indicator"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "78cf4d99-6096-43a8-95e2-4e8328a78b18",
"metadata": {},
"outputs": [],
"source": [
"DATA_PATH = Path.cwd().parent / \"data\"\n",
"\n",
"urban_rural_from_geocorr = pd.read_csv(\n",
" DATA_PATH / \"dataset/geocorr/usa.csv\",\n",
" dtype={\"GEOID10_TRACT\": str},\n",
")\n",
"\n",
"score_m = pd.read_csv(\n",
" DATA_PATH / \"score/csv/full/usa.csv\",\n",
" dtype={\"GEOID10_TRACT\": str},\n",
" usecols=[\n",
" \"Expected agricultural loss rate (Natural Hazards Risk Index)\",\n",
" \"Expected agricultural loss rate (Natural Hazards Risk Index) (percentile)\",\n",
" \"Greater than or equal to the 90th percentile for expected agriculture loss rate, is low income, and has a low percent of higher ed students?\",\n",
" \"Urban Heuristic Flag\",\n",
" \"Is low income and has a low percent of higher ed students?\",\n",
" \"GEOID10_TRACT\",\n",
" \"Total threshold criteria exceeded\",\n",
" ],\n",
")\n",
"\n",
"# Note that I downloaded this fresh because I am paranoid; this is not going to load on other computers and I am sorry!\n",
"nri_full = pd.read_csv(\n",
" \"/Users/emmausds/Desktop/current-work/NRI_Table_CensusTracts.csv\",\n",
" dtype={\"TRACTFIPS\": str},\n",
" usecols=[\n",
" \"TRACTFIPS\",\n",
" \"AGRIVALUE\",\n",
" \"CWAV_EALA\",\n",
" \"DRGT_EALA\",\n",
" \"HAIL_EALA\",\n",
" \"HWAV_EALA\",\n",
" \"HRCN_EALA\",\n",
" \"RFLD_EALA\",\n",
" \"SWND_EALA\",\n",
" \"TRND_EALA\",\n",
" \"WFIR_EALA\",\n",
" \"WNTW_EALA\",\n",
" ],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "04ed5585-e7e5-4209-8e55-75a3e1fce633",
"metadata": {},
"source": [
"## Understanding our current implementation\n",
"\n",
"In our current implementation, on average, urban areas have a higher NRI (scaled) and a higher percentile of the loss rate. The share of Rural and Urban tracts identified by this threshold is roughly equal. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "48250479-4074-4b04-9f8b-56a6105e8225",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Expected agricultural loss rate (Natural Hazards Risk Index)
\n",
"
Expected agricultural loss rate (Natural Hazards Risk Index) (percentile)
\n",
"
Greater than or equal to the 90th percentile for expected agriculture loss rate, is low income, and has a low percent of higher ed students?
\n",
"
\n",
"
\n",
"
Urban Heuristic Flag
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0.0
\n",
"
0.011502
\n",
"
0.486045
\n",
"
0.021132
\n",
"
\n",
"
\n",
"
1.0
\n",
"
0.016255
\n",
"
0.505159
\n",
"
0.018296
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Expected agricultural loss rate (Natural Hazards Risk Index) \\\n",
"Urban Heuristic Flag \n",
"0.0 0.011502 \n",
"1.0 0.016255 \n",
"\n",
" Expected agricultural loss rate (Natural Hazards Risk Index) (percentile) \\\n",
"Urban Heuristic Flag \n",
"0.0 0.486045 \n",
"1.0 0.505159 \n",
"\n",
" Greater than or equal to the 90th percentile for expected agriculture loss rate, is low income, and has a low percent of higher ed students? \n",
"Urban Heuristic Flag \n",
"0.0 0.021132 \n",
"1.0 0.018296 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"score_m.groupby(\"Urban Heuristic Flag\")[\n",
" [\n",
" \"Expected agricultural loss rate (Natural Hazards Risk Index)\",\n",
" \"Expected agricultural loss rate (Natural Hazards Risk Index) (percentile)\",\n",
" \"Greater than or equal to the 90th percentile for expected agriculture loss rate, is low income, and has a low percent of higher ed students?\",\n",
" ]\n",
"].mean()"
]
},
{
"cell_type": "markdown",
"id": "da540db6-d07b-4dac-9959-23e29df0881b",
"metadata": {},
"source": [
"We can also look at the distribution of percentiles among the urban and rural tracts. This is very much not what I might expect -- I'd hope the rural areas were \"flatter\" in distribution than the urban areas. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7adf50e6-9293-40df-afd2-b1fe152d88ad",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
" warnings.warn(msg, FutureWarning)\n",
"/usr/local/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
" warnings.warn(msg, FutureWarning)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/AAAAHwCAYAAAABwIQnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB67ElEQVR4nO3dd5wk113v/e+vqsPktDObZnOUVnm1kqxkyZYtyzbYBGNsgjHX4AuXaMJzzXO5YMxzL+ZyL1wyGDC2wTiDEcZYlmRJlmSlVdauwubd2TgzOzl0qDrPH9WzGo1mdmdnu6e7uj/v12te011dXX26urpP/eqc8zvmnBMAAAAAAKhsXrkLAAAAAAAAzo0AHgAAAACAGCCABwAAAAAgBgjgAQAAAACIAQJ4AAAAAABigAAeAAAAAIAYIIAHisjM1pnZCzOWfczMfm2O9T9tZu8pQTlet10zGy3i9n/GzD5wlsdvNbMb5rv+LM8PzOyZaX/rCtv8+oWWfSHM7DfMbK+ZvWxmb5tjnfVm9lhhvS+aWWqxywkAtY56+MzjVVMPm9kSM7vPzEbN7M/Osl6Hmd1tZnsK/9sXs5zAYkmUuwBArTKzWH7/zCzhnPurc6x2q6RRSd+VpHmsP9OEc+7KGa+77jy3URRmtk3S+yRdImmlpHvMbItzLpix6u9L+iPn3BfM7K8kfUjSXy5uaQEA80U9fFYVUw9LmpT03yVdWviby0cl3euc+4SZfbRw/78uQvmARUULPLCIzOx+M/u/ZrZT0i8VFr/FzHaa2Stm9j2F9daZ2YNm9lTh74bC8lsL2/iKmb1kZp8zM1tAOX7dzJ4ws+fM7HemveYL09b5NTP72Gzlnt6aYWa/aGa7C9v6QqGC/xlJHylctb95xvqbzOweM3u28N42LqD815rZI2b2tJl918y2FpY3mNmXCuX5l0KL+I7z3f4M75b0Bedcxjl3QNJeSdfOKI9JerOkrxQWfUbS913g6wIAiox6OH71sHNuzDn3kKJA/mzeraj+laiHUcVieeURiLmUc26HFHWxk7ROUUC4UdJ9ZrZJ0ilJb3XOTZrZZkmflzRVAV6lqDX4mKSHJd0o6aFZXucPzOw3Zy40s9slbS68pkm608zeKOnweZT7Y9OWf1TSeudcxszanHODFrVAjzrn/ndh/dumrf85SZ9wzv2LmdVp9guJ9Wb2TOH2Aefc9894/CVJNzvn8mb2Fkn/U9IPSvovkgacc9vM7FJJz2gWZvZHkt40y0NfcM59YsaybkmPTrvfU1g23RJJg865/FnWAQBUBurheNXD87XMOXe8cPuEpGUL3A5Q0QjggeJy81j+xRmPfck5F0raY2b7JV0k6YCkPzOzKyUFkrZMW/9x51yPJBUq13Wa/cTh151zUy3C08fe3V74e7pwv0nRicS5ThxmlnvKc5I+Z2Zfk/S1s23AzJoldTvn/kWSnHNzXU1/Xde9GVolfaZwUuUkJQvLb5L0x4Vtv2Bmz832ZOfcR85WTgBAbFEPn0Wt1MPOOWdmcx0LQKwRwAPF1S9pZtKUDkUnAlPGZjw+s4Jxkj4i6aSkKxRdGZ9ewWam3Q50/t9jk/R7zrm/fs1Cs1V67VX4uhnPm1nuKe+U9EZJ3yvpv5nZZedZnoX4XUn3Oee+v9BV8P7zefJ5Xvk/Kmn1tPurCsum65fUZtG4xPwc6wAASo96uPrq4fk6aWYrnHPHzWyFol4UQNVhDDxQRM65UUnHzezNUpQRVdIdmv3K/JQfMjOvMAZtg6SXFV3ZPl5oEfhxSX4Ri3mXpP9kZk2FMnab2VJFJypLLcr2mpb0PefakJl5klY75+5TlCimVVFLwoik5pnrO+dGJPWY2fcVnp82s4YFvIdWvRogf3Da8oclvbew7W2SZj2Jcc59xDl35Sx/s5003CnpfYWyrlfUSvL4jO05SfdJmso4/BOS/nUB7wsAcAGoh6uyHp6vOxXVvxL1MKoYATxQfB+Q9N8L3eq+Lel3nHP7zrL+YUUB4X9I+plCd7a/kPQTZvasoq58c111P2/OuW9J+idJj5jZ84oSrzU753KSPl4oy92Kxrediy/pHwvbeVrSnzjnBiX9m6Tvn0qeM+M5Py7pFwvd6r4rafkC3sb/kvR7Zva0Xtvy8ReSusxst6T/T9IuSUML2P4Zzrldkr4kabekb0r6uakM9Gb2DTNbWVj1v0r6FTPbq2hM/N9dyOsCABaMeriK6mFJMrODkv5Q0gfNrKdwcUBm9rfTkuR9QtJbzWyPpLcU7gNVx6KGIwCIPzPzJSULSYc2SrpH0lbnXLbMRQMAoOpRDwOlxxh4ANWkQVEG4aSiMYb/hZMGAAAWDfUwUGK0wAMAAAAAEAOMgQcAAAAAIAYI4AEAAAAAiIHYjYG/44473De/+c1yFwMAgLizhTyJehgAgKJYUD0cuxb4vr6+chcBAICaRT0MAED5xC6ABwAAAACgFhHAAwAAAAAQAwTwAAAAAADEAAE8AAAAAAAxQAAPAAAAAEAMEMADAAAAABADBPAAAAAAAMQAATwAAAAAADFAAA8AAAAAQAwQwAMAAAAAEAME8AAAAAAAxAABPAAAAAAAMUAADwAAAABADBDAAwAAAAAQAwTwAAAAAADEAAE8AAAAAAAxQAAPAAAAAEAMEMADAAAAABADBPAAAAAAAMRAotwFAIBK8sD+TMm2fcuGdMm2DQAAgOpHCzwAAAAAADFAAA8AAAAAQAwQwAMAAAAAEAME8AAAAAAAxAABPAAAAAAAMUAADwAAAABADBDAAwAAAAAQA8wDXyVKOXe1xPzVAAAAAFButMADAAAAABADBPAAAAAAAMQAATwAAAAAADFAAA8AAAAAQAwQwAMAAAAAEAME8AAAAAAAxAABPAAAAAAAMcA88ECNemB/pmTbvmVDumTbBgAAAGoVLfAAAAAAAMQALfAAalo+dNp1Mq8Dp/M6NhJqX39enknphKkuYVre7Gltq69UwspdVAAAANQ4AngANengQF7fOZDVEz05jeecTFJXo6emVBSoZwLp5GioAwOBHrOcVrV4umJFUu31dFwCAABAeRDAA6gphwby+tfdk3r2RF4pX7pqZVLXr0npoq6Ekr69JjeAc079E04HTue1/3Sgf385o8uXJ3TpsoQ8o0UeAAAAi4sAHkBNGMmE+vyzE3rsSE4NSdMPXFKnN29Mqz45dyBuZupsMHU2pHTZMqfHe3J65nhehwYDvWlDSk0pWuMBAACweAjgAcTKQrLnHxoM9NiRrLKBdNmyhC5ZllDKNz1+JDvvbdQlTW9cn9K6wUAPH87qW3uyun1TSk1pgngAAAAsDgJ4AFVrMuf0WE9OhwYDddSb3ropdcFj2Ne0+WpIpXXP3ozu2pPV7ZtTaiaIBwAAwCIggAdQdZxzUat7T065QLpqRdTqXqxx650Nnt66Ka27C0H8O7am1XCWrvhANRnJuAX1hJmPWzakS7JdAACqBc1GAKrKRM7pgYNZfedgTk0p0/dsTeuy5cmiJ51b0uDp9k1pZQOnBw9mFTpX1O0DAAAAM9ECD6AqOOd0cCDQ4z055UJp+8qEti0tbbb4jgZP161K6uHDOT17PK+rViZL9loAAAAAATxQ43KB07GRUP3joUYzTqPZUPlQ8j3JN1N90tReb2qr89TV6J01a3u5TOScHj2S1ZGhUJ0NphvWpNS2SPO1b1yS0MmxUM+fzKur0dOqVn9RXhcAAAC1hwB+EZVqzCBwvvKh077+vPadDnRqLFToJJPUmDI1pUwNSSlwUj6U+sdDHRp8tXv4knpTd6uvdW3+ogXJc3HO6UCh1T0fSlevTOjiEre6z+baVUn1j4V6+FBW7764TnUVeJEDAAAA8UcAD9SQiZzTffszumdvRkOTTi1p08VdCXW3eFra5M0Z+OYCp8FJp+MjgY4Oh3r+RF7Pncirs8G0aUlC69p9pfzFDVqHJ0M91pPT8ZFQXY2ebliTVGtdeS4oJDzTzetS+reXMnrqWE43rE2VpRwAAACobgTwQA1wzumxIzl96fkJDU06bVua0I5uTyubPdk8WquTvqmr0dTV6Ony5dH0bPsHAu3tz+vRIzk90ZPT2nZfm5f4WtpY2iA6FzjtOpXXCyfz8k26ZlVSWzv9RW91n6mt3tO2pQntOpXXpiWBljbRlR4AAADFRQAPVLmTI4E+/dS4XukLtLbN18+9oV4blyQuaEhHXdK0bWlCF3f56h932tOf18GBQPtPB2pJmzKBdOPalJqKOD96NnC6b19G//ripDJ5aX27rx3dyYoak3/58oQODETT171z69w9GgAAAICFKFkAb2afkvQ9kk455y6d5fEflfRfFQ29HZH0s865Z0tVHqDWOOf00KGsPv/MhHzP9IGr6nXz+lRRg0ozU2ejqbMxpR3dTocHA73SH+hLz0/qn3dN6rLlSb1hdVJXrEgqucAu9n1jgb5zMKuHDmY1NOm0otnTlSuS6ipxS/9CJH3TNauSeuBAVi/3Brp4KddIAQAAUDylPLv8tKQ/k/TZOR4/IOkW59yAmb1d0iclXVfC8gA1YyLn9JmnxvVET04XdSX0oR0N6mgobcCb9E0blyTO/D10MKvHe7J6+lhO6YR0UVdClyxNamtXQsubPSW82QP60DkdGQz0YqGb/Eu9eUnSZcsTetuWtE6OhCV9HxdqTWs0NOGZEzlt6PCVTtAKDwAAgOIoWQDvnPuOma07y+PfnXb3UUmrSlUWoJacHAn0p4+M6eRoqB+8tE53bEkvelfuVa2+3ndFvd57eZ1eOpXXk0dz2n0qr2ePT0iSPJO6Gj0tafCU8KIkcJN5p/7xUKfHQ+UKMfqKZk/fc3FaN69La0nhAsTJkcqezcHMdHV3Uv/2Uka7TzE3PAAAAIqnUvp3fkjSf8z1oJl9WNKHJWnNmjWLVabYm8g59U2b29szU1udqbXOU3u9yZ+jBRTx9fyJnD75+Lg8k3715kZd1FXe4NEz07ZlSW1bFpWjdzTQ3tOBjo8EOj4camgy1Fgo5cNQKd+0utXXFSuSWt3q6+KlCbWXeZq6hWqv97S2zdeLvXldvDShOlrhEXPT6+FlK1eXuTQAANSusgfwZvYmRQH8TXOt45z7pKIu9tqxY4ebaz1EhidD7T6V197TgcLC3vJNctKZ+ylf2tDha/OS+AZJeK1v78von56ZUHerp1+4vlGdjZWXBb2ryVdXjWRnv2J5QocGA+06mdfV3bTCI96m18NbL7uaehgAgDIpawBvZpdL+ltJb3fO9ZezLNUgdE5PHs3pxd5AnkkbO3xt7PDVkvaUTkQB/Egmms/74ECgV/oCvdQbaEWzpx3dSQL5mAqd01dfmNQ3X8noihUJffjaRlp8K0Bbvaf17b5e7str29JERWXLBwAAQDyVLYA3szWS/lnSjzvnXilXOapFLnD6zsGsjg6H2tLp64rlr59eyyS11pla66S1bb4m8057+6NEYf/2UkYbO3xtX1lZ03Lh7HKB09/tjJLVvWlDSj9yZT1Tl1WQK5YndHAgaoXfsYpWeAAAAFyYUk4j93lJt0rqNLMeSb8tKSlJzrm/kvRbkpZI+guLAo68c25HqcpTzcazTvfuy2hw0um61Ult7Zzfx1qXMF26LKnNSxJ6vpDt+8hQoGtXJbW+3ZcRCFa0iZzTnz8yphd78/qhS+v0ti1pPrMK01IXtcK/0p/XZcvLPmIJAAAAMVfKLPTvP8fjPyXpp0r1+rUiCJ3u25/RaNbpto0prWw5//HF6YRpR3dSm5f4+u7hnB46lNPBgUBvWJNSA63xFWkkE+r/Pjymw4OBPrSjQTesTZW7SJjDtqUJ7R8ItKc/r9vLXRgAAADEGoOeY8w5p8eO5NQ/4XTTuoUF79O11nl62+aUdnQndXwk1J0vTurQYFCk0qJY+sZC/d79ozo6FOjnr28keK9wHQ2eljd5eqk3r3xI7i8AAAAsHAF8jO3pj6bkumxZQqtbi5PZ2zPTtqUJfc9FaTWnTA8cyOrhQ1lN5Ag8KsHR4UCfeGBEIxmnX725SVesYFx1HGxbmtB4TtrZkyt3UQAAABBjBPAx1T8e6vGenFY2e7piRfFHQrTWeXr71rQuW5bQ/tOBPnbPiF7pyxf9dTB/+/rz+sT9owqd9P/c0qTN88x1gPLrbvHUmjZ9a09GznExDAAAAAtDAB9Dzjk93pNTypduWpcqWdZxz0xXrUzqbZtTMpP+1wOj+uoLE3QDLoNnj+f0vx8cVVPK9Bu3NhWtxwUWh5np4qXRvPCv9DEsBQAAAAtDAB9DBwYC9Y6F2r4yuSjzfS9t8vXbtzXrpnUpfePljP7HfaM6NkwQslgeOpjRnz0yphXNvn7j1iZ1NRK8x9GGDl9NKdM9ezPlLgoAAABiij64MZMLnJ46ltOSetPGjsUL5OqTpg9e3aDLlyf0macm9PF7R/Sey+r15o2l6wFQ6+7fN6kXTub19PG8VjR7umFNUk8fYwx1XCU8003rUvrWnowGJkK113P9FAAAAOeHM8iY2XUqr/GcdM2qZFnm/N7endLH39qsi5cm9PlnJ/RHD41pYCJc9HJUu9A5PXE0p6eP57Wu3debN6SU9LlQEndvXJ9S6KSHDmbLXRQAAADEEC3wMTKaDbXrZBTQLW0qXzfq1jpPv3hDox44kNUXn5vQb909oh+/qr5sFxWqTS5w+rud43qpN9DFXb52dLNfq8WyJl8XdyX04MGM3nlRmt4rAAAAFeqB/aUd9njLhvSCnkcLfIy8eCqv0EnbV5b/uouZ6dYNaf32bc1a1uTprx8f1589MqbT47TGX4iJnNMfPzymJ3py2r4yQfBehW7ZkFL/uNOuk8zqAAAAgPNT/kgQ85LJO+3pD7S+3VdTqnKuuywvJFa7e29G/7p7Uv/97mH94KX1unVDbYyNL+aVuYmc0737MhqYcLpxTVIbl/D1rEZXrUyqJW26f39Gly1Plrs4AAAAiJHKiQRxVnv688qH0rallRfU+Z7pji11+vhbmrWhI6HPPTOh33+ATPXnYzgT6j9eyWg44/TmDSmC9yqW8Ew3rk3puRN58kcAAADgvBDAx0AQOr3YG2Ui72io3I+sq8nXr9zUqA/taNDxkVAfu2dE/7p7QrmAeePPpm8s1DdfySgXOL11U1rdzPFe9W4mmR0AAAAWoHKjQZxxcCDQRK4yW99nMjPdsDal/3F7s65ZldSdL2b0O/eOaE8f431n0zMU6Ft7M0p4prdvSaurka9kLVjW5OuiroS+eygr57jABQAAgPmp/IiwxjnntOtUXm11ppXN8QnumtOefvraRr1hTU7/8PS4PvHAqG7bmNJ7LqtXiunQJEXDIh49nFN7vem2jWnVJ6tnv5Q6a2c1uGFtSp/aOa69/YE2d/JTDAAAgHOLT0RYo06OhhqcdLp4aSKW2cgvW57Ux9/aots2pnTvvqw+fu+IDg3Udmu8c07PncjpkcM5LW/29LbN1RW8Y36u7k4q7UsPH6IbPQAAAOaHAL7C7T8dKOFJ69riOy66LmH6kSsb9Cs3NWoi5/Q/7hvVXa9M1mTX4dA5PXYkp2eO57Wh3debN6SUpEdCTapLmK7uTmpnT1ZZ8kQAAABgHgjgK1g+dDo0GGhtm18VQd4ly5L6nbc26/IVSX3p+Un91WPjmsjVTuCSD53uP5DVK/2BLl2W0I1rk/K9+H+uWLgb1qY0kZeePpYrd1EAAAAQAwTwFezwYKBcKG3siG/r+0xNKU8/94YG/dCldXryaE7/474RnRip/unmJvNOd+/Nqmco1LWrktq+MhnLIREorq1dCXU0mL5LN3oAAADMAwF8Bdt3OlBjyrSsqbo+JjPTHVvr9Gs3N2ok4/Q/7x+t6iz1Y9lomrj+8VC3rE/poi4SliHimen6NSntOsmc8AAAADi36ooMq8h41unESKiNHX7VttRetDSp//amJjWlTP/7wVHt7Km+VsiRTKi79mQ1kXN666aU1sY4lwFK44Y1KTlJjx2uvuMfAAAAxUVTYIXaP5CXk7ShirrPz2Zpk69b1qd03/6s/vKxcV13LKetRZxS65YN6aJt63wNZ0J9a09W+dDprZvT6mzgehleb3mzr/Xtvh49ktMdW+vKXRwAAABUMCKKCuSc077TgboaPbWkq/8jqkuYbt+U0qoWT48dyWn3qfh3px+aDHXXKxkFzun2TQTvOLvrVid1ZCjQ8eHqzwcBAACAhSOqqECDk05Dk67qW9+n8z3TLetTWtPqaefRnJ4/Ed+s3AMToe7ak5GTdPumtDoI3nEOO1alZJIeq8JhJAAAACgeIosKdGQoaoVb01o7AbwUBfFvXJ/SunZfTx/P64WT8Qvi+8dDfWtPRmbS2zan1V7PVwzn1l7vaWtXQo8fycm52plaEQAAAOeH6KICHR6Mus/XJ6szed3ZeGa6aW1S69p8PXUsr5d649Odvm8s1N17M0p4pjs2p9Vax9cL83ft6qROjoY6PEg3egAAAMyOCKPCjGZDnZ5wWt1aux+NZ6ab1iW1utXT4z057emv/CD+1Gigu/dmlPJNb9uSUnMN5C5AcV3dnZRv0mNH4tfzBAAAAIuDKKPCHBmK5oKute7zM3lmeuO6lFY0e3rkcE4HTlduEH9iJNA9+7KqS5retjmtphRfK5y/ppSnS5cl9HhPViHd6AEAADALppGrMEcGA7XWmVrofi3fM71pQ0r37svqoUM5+Z5pTYXNo35sONB9+7NqSpveuimthhoc9oDiuXZ1Ss+eGNfe/kBbijidIgAAQDV6YH+m3EVYdJwhVpBM3unkaKhLl/GxTEl4pjdvSOnuvRl952BWb9qQUndLZQTxzx3P6dv7s2opBO+1mLMAxXXlyqRSvvTYkSwBPAAAwDmMZ51OT4Q6PRFqOOOUD5zyoWQmtaRNrXWeljZ6aquixNKcIVaQnuFATtLqCuw+X86rW0nf9JaNaX1rb0b378/qto0pLW8u7z56+lhOf/nomNrqTG/ZlFZdguAdF64uYbpiRVI7e3J6/xVOCY/jCgAAYEoQOr3cm9dzJ/J6/kROJ0bDM481JE0pX0p4UuCkEyOhAhclB17e5OnipQmtavFkFu/zKwL4CnJkMFBDUlrSEO+DqhRSiShQvmtPRt/en9VbN6XU1VieIP6Jnqz+5vFxrW33dW13UimCdxTRtauSeqInpxdP5XXZ8mS5iwMAALBgxWoE7B8Ptf90XgcGAk3mJc+ioHxHd1KdDaa2ek8p/7Xn5M45jWadDg0Geqk3Gvba2WC6dUO8h70SwFeIIHQ6NhJqQ4cf+6tCpVKXiLqq37Uno3v2ZnX75rSWNCxud5hHD2f1t0+Ma9MSX790Y5MeP5Jd1NdH9btseVL1SenxI1kCeNScUvf2umVDuqTbBwAUTz50OjgQ6OW+vPrHnTyTVrV4Wt+RUHeLd86eimam5rTp0mWeti1N6MDpQI/15PTvL03q1g1pdTXGs1t9PEtdhXrHQuVDVcz47krVkDTdvimlVMJ0z96MBibCcz+pSB48kNHfPjGurV0J/fJNTYx5R0kkfdP2lSk9dSynbEA2egAAUFsmc07PHM/pqy9M6ruHc8qHUQ/FH7q0TrduSGttm3/ewww9M21cktDbt6Tle6a79mR0aCAo0TsoLQL4CnFsJJRJWtbER3IujSlPt29KyfOku/dmNDxZ2iDeOaevvzSpTz81oUuWJfSLNzQy5h0ldd3qpCbz0nMnmBMeAADUhvGc0+M9WX1116SeO5FXV1N0zv+ui9K6qCuhdBHOv9vrPb1za9SL96FD2UVtDCwWutBXiOPDgboaXz92A7NrTnu6vdCd/lt7s7pjc0pN6eJf/Aid0+efmdC392f1htVJ/eSOBhKLYcHm2z04dE51CenfX5rUWGZ+rfB0DQYAAHE0mXN64VReL/fmFTppY4evS5Yl1FqiabXTCdOt61P6+suTun9/Vu/cmo5VTisC+AowmXfqn3C6cgXd589Ha513Zkz8N/dk9KYNxR0TP54N9bc7x/Xs8bxu35zWD11WJ4/8BFgEnpnWtvna0x8oGzgu7KFmDU+GeuJoTsMZp8akqTFlWt/uayXDzQAg9jJ5p92n8nqxN68glDZ0+Lp8eULNJWiUm6k+abplXUp37cnqoUPRVNVxyUNGAF8Bjo9E4y9WlHlqtDhqr/f0ts1pfXtfVnftyejGtSmtbbvw/dgzFOjPHxlT/3ioH7miXrdtonUTi2t9u6+X+wIdGQy0cQk/1agtQei061Q0TZDvSSubPY1lnXqGQu07HeiiLl/bVybpEQUAMRSETi/25vX8ybxygbSuzdcVK0rX4j6XpU2+rlmV1OM9Ob3cF+iirnicb8WjlFXu+EiolM/0cQvVXu/pHVvTum9/Rg8cyOqyZQldvjwhfwEndqFzemB/Vl96fkL1SdOvv7FJmzv5mmDxdTV6akyZDhLAo8Y45/TgwawOD4Va1xadXE0lDQ1Cp6eO5fRib6ATI6FuXZ9SyyKf8AEAFsY5pyNDoXYezWk067SqxdNVK5Nqry/f7/jWTl+HBwM9eyKnDR1+LHo9clZYZs45HRsOtbzJo3v2BahPmt62Oa1Hj+T0/Mm8Dg0Gun7N+U3BdWgwr394akIHBqIrcD99TYPayviDgtpmZlrX5mv3qbwm847EiagZBwcDHR4KddWKxOumUvQ90zWrUlrZEujhQ1ndvS+rd2xJMysIAFS4gYlQT/TkdGI0VFud6S0bUxUxHMrMtL07qW+8nNHuU3lduaLyp/AlgC+z4YzTeM5pZQsfxYXyPdONa1Na1x7osSM53bUnq5Ojod64Pq1Ll83eIh86p10n83rgQFbPHMupOW366WsadN3qZGzGwaB6rWv3tetUXocHA22hJwhqwGTO6fGenDobTJcsm/uY727x9eaNaX1rT0b37svobZvTSsag1QQAas3UlHB7+gMl/Wg6uC2dfkU1XHY2eFpbaDTZ2pmo+IvCnBGW2bGRaOqCFc209BZLd4uv773I065Tee0/HeiZ42Nqrzetb0+os9FTW51pcNLp5Gigw4OBBiacWtKmt29N644taTWm+CxQGTrqTS1p08EBAnjUhsd7csoF0g1rUuc8uets8PTGdSndtz+r7xyMEhBV0gkhgNoy35lmFipus83kQ6d792b0Ly9OKh9IW7t8XbE8WZSp4ErhqhUJHR4M9NyJnK5bnSp3cc6KM8IyOz4cqDlli5JtsZYkfdOVK5L6uesb9dzxnB45nNPxkUDPn8gpF0pJT1ra5GlDR0LXrkrqSpIhoQKZmda1+3ruRF7jOaeGCr8iDFyInqFABwcDXbkiMe/hS6tafV23OqlHj+T07PG8rlpZ+V0fAWAm55yGJp36xkONZJxGMk650MkkmUn1CdNk3ml5s6917f6iJ3s7H845PX0sp6+8MKmTo6FWNnvasSqptgousyS11Hna3Onrlb5A25aGFR2bEcCXUeicTo6GWt9e/vEf1SrhmbZ3p7S9O7qS5lw0ZKE+abTUIBbWtUUB/KHBQBfHJDsqsBC7TuXVlDJdepau87PZ0plQ71ioF07m1d3iaWkTdSqAeOgfD7W3P6+jw6FGs06SZJIaU6a0L4WSnJNOjoZ6pT8487yVLZ4u7kroypVJbe1cWOLmUjhwOq8vPj+hPX2BVjR7+sUbGjUwHsRmWOrly5Pa0xfolb5AV3cTwGMWAxNOuTBqCcbiMIvmEQbioq3eU3td1I2eAB7Vangy1MnRKHHdQi6uXrMqqZOjoR46lNP3XuQxHh5AxZpKYL3rVF4nRkP5Fg2lvXRZQsubPDWlZ29kuro7qeMjofb05/Vyb14PHszq3n1ZNadNV69M6vq1KW3s8MsSLPeNBfrnXZN67EhOLWnTj19Vr5vXpeR7pgf2h4tenoVqSJpWt3radzqvK1dUzoWRmTgbLKNTo9EBvYwAHsBZrGv39fTxvEazoZrI0YAqtKc/kEkLnjIx5ZtuXJvUt/Zk9cTRnG5YU9njFwHUpqHJUI8diTKxNySlq1cmtLkzMa+py548mpMkNSZN21cmdfnyhI4Ohzo0EOjBg1ndfyAK5jd2+NrQ4Z/X+cJCx9cPTIS665WM7tufkWfS91yU1h1b6io+CdzZbFqS0OGhrHqGQ61tq8weXQTwZXRyNFBTykiaBuCspgL4gwOBLl3G7wWqSxA67Tud16pW74LyPCxr8nXJsoReOJnX2tZA3a2VeeIFoPYEodNzJ/LadSov34sysW9e4l9QC2/CM61t87W2zVcucDo0GGjf6UDPHM/rmeN5LW/ytGmJr9WtftF7JZ0cCXTXnowePpRV6KTr16T0fdvq1NEQ/3OUlS1RXbSnL08Aj9dyzunkWKhVFTD/IYDK1pz21NlghQCeJF2oLj3DoSbz0uYFtr5Pd8XyhI4MBnqsJ6d3NXskJwVQdqPZUN85kFXfuNOGdl9XdyeL3kKd9E2bliS0aUlCI5lQ+09HwfxDh3JKeDmta/O1vsPX0kZvwRcNMvkoOd13Dmb1cm9eCU+6aW1Kd2xJq6uKco94Ztq0JMo/VKk9Hwngy2Qo45TJM/4dwPysa09o59GchibDis4+C5yvPX15NSRNK1su/Lj2PdN1q5P61t6snj9BVnoA5dUzFOihQ1k5J92yPrUoLbrNaU9XrPB0+fKETo2F2tsfzfCx93SghCetbPa0rMlXR4Opo37unCETOadjw4EODESzOL3Um1c+lLoaPf3AJXW6aV2qas9HNnVEAfze/kBXrqi890gAXyZnxr83Vt5BAaDyrGvztfNoTgcHAl1RgZUJsBCj2VDHRkJdvnxhyetms7w5Gv+561Re6zv8ip+6CEB12n0qr51Hc+qoN92yPrXo05KZmZY1+VrW5OvaVU4nRkMdHQrUMxzq8FDuzHp1CenuvRk1pUyBi1rax3NOAxPuzDrLmjy9aUNaV65IaEtX8X6vK1VT2tOKZk97+4Oi1k/FQgBfJidHQ9UnpOZ0ZR0QACpTQ8q0rMnTwYGoMonLlCzA2RwaiKZF2tRR3Fapq1cm1TMU6LEjOd2+KcX3BcCicc7pyaN57e7Na02bp5vWpso+nCfpm1a3RuPhJWk853R6PNTpiVDjWafmOk+jWaeUSW11nuoS0cXQ7hZfq1p9ddZgg+OmJb4ePJjTqdFQy5sra4gAAXwZuML870ubyjPVA4B4Wtfu67EjOQ1OOrXX89uB+Ds2Eqq1ztRU5Jap+kKW5keP5LT/dLDg7PYAcD5C5/TwoZwODATa2unrmlXJimu9laLp0hpao+BcWngW+mq2qsWXZzn1DFdeAF97l1MqwFg26prC9HEAzsfaVl8m6UCh1RKIs3zodGo01Mrm0tSFm5f46mr0tPNYTpm8O/cTAOAChM7pwYNR8H7VioSurdDgHfOT9KOejz1DlXfORQRZBifHmP8dwPmrS5pWNEfd6J0jIEG8nRoNFThpZYlaNsxMb1idVDYvPXUsd+4nAMACBWEUvB8aDHT1yoQuW56kl20VWNXqazjjNDwZlrsor0GfsjI4ORoq5UttdXyxAZyfde2+vns4p77xUF2NldWlCzgfx0ZCeVba2Vja6z1dvDSh3afy2thRea0oAOIvdE5/t3P8TPB+SQyne31gf6bcRahIq1s8PSGpZzjQtgpKiFo5JakhvWOhuho9rswBOG9r2nz5Ju0/TTCCeDs+HGhp49xTGBXLFcsTakiaHj2SUz6k5wqA4nHO6Z+emdBjR3LaHtPgHXNrSntqqzMdGaqsFviSBfBm9ikzO2VmL8zxuJnZn5jZXjN7zsy2l6oslSSbdxqadOqqwWyOAC5cqpBJ9uBAoIBgBDE1nnMamHRFmfv9XJK+6dpVSQ1OOt2zl1YmAMVz54uTum9/VndsSetSgveqtKrV16nRsKJyqZSyC/2nJf2ZpM/O8fjbJW0u/F0n6S8L/6ta33h0BYcAHsBCbejwdXAw0LGR8MyUMECcHB+OepCUavz7TKtbPa1q8XTn7kldsyqlJQ3UwYul1F1zyZ6NcrlvX0Z3vpjRjWtTes+ldfrOgWy5i4QSWN3q6YWT0rGRQOvbK2P0eclqMOfcdySdPssq75b0WRd5VFKbma0oVXkqRW8hgR0nDwAWamVLNEcr3egRV8dGQtUltGjTIZpFrfBO0uefnViU1wRQvZ4/kdPnnpnQFcsT+ont9QyLrWJLGjylE1JPBXWjL2cU2S3pyLT7PYVlr2NmHzaznWa2s7e3d1EKVyp946Ha6kypEo/5A1C9PDOta/d1ZChQtoK6dKF6Ta+Hh05fWD3snNPxkUArmv1FPeltSnv63ovr9PSxnJ4hKz2ABeoZCvRXj41pVaunD1/XKN/jnL6aeWZa1eLr6HCgsEJmAIpFM7Bz7pPOuR3OuR1dXV3lLs6COefUOxaqk+7zAC7QhvaEQicdqsD5SVF9ptfDrR0XVg8PTDhN5lWy+d/P5vbNaa1s8fS5Z8Y1kauMEzEA8TE8GepPvzumdML0izc0qS5B8F4LVjR7ygZR/VUJyhlJHpW0etr9VYVlVWsk45QNGP8O4MItaTC1pI1u9IidqVwwpZw+bi4Jz/QT2xs0MOH01RfoSg9g/nKB058/OqbhTKhfvKFRHQyHrRnLCvXVqdHK6EZfziPvTkkfKGSjf4OkIefc8TKWp+Smxr938YUHcIHMTBs6fJ0cDTWSqYwKBZiPvvFQaV9qSpWn5WrTkoRu25TSffuzeqUvX5YyAIgX55w+/eS49vYH+tCOBq2rkGRmWByNKU+NKdPJscpoNCnZ0Wdmn5d0q6ROM+uR9NuSkpLknPsrSd+Q9A5JeyWNS/rJUpWlUvSOh0p6Umsd3W0WS6mz3wLltLHD1zPH89pHKzxipG8s1JIGr6xJn37gkno9cyyvTz85ro+9pZm8NCUUOqeJnDSWDTWWc5oaQuqZqTEVnRjXJ0QSMFS0r7+U0aNHcvqBS+q0Y1Wq3MVBGSxr9HRsJJBzruy/VyUL4J1z7z/H407Sz5Xq9StRX2H8e7k/dADVoTHlaWWzp739UWIVj98WVLhc4DQ06bSmrbzTH6YTpp/YXq//89CYvrZrUu+9vL6s5akmoXPa0xfopd6cXukLtLc/r/w5OgklPKmzwdPSJk/LCn/8nqFSPNGT1dd2T+r6NUm9YyvTFtaqpU2e9g8EGsk4tZS5MZb+H4skk3camHC6dBlzNgMons1LEnrgYFa7TuZ12fJkuYsDnNXpiVBOUbBWbtuWJXXL+pS+tSejy5cndNFSvj8L5ZzTgYFAjxzO6smjOQ1NOpmk1W2+Ni3x1VrnqSllakyaPJOcpNBJY1mn0azT0GSo3rFQz5/I6zlJKV9a1eprXZuvlS0E8yif/afz+rsnxrVpia+f2N5AI1wNm8rbcnIsVEtdeeswAvhFcmgwkBMJ7AAU16rWaH7SBw9mCeBR8foKuWCWVEAAL0k/fHm9XurN6293Rl3pm1KVUa64yOSdHj2c1X37szoyFCjpSZctT+ra1UldsiyphqSddShb+4yOD7nA6fhIqMNDgXqGAu0/Haghadq8xNemJQk1lilvAmpT/3iUcb6t3tPPX9+oJENtalpr2pRORInsNi8pb1kI4BfJ/v4oUQ5TyAEoJt8zbWj39cyxnEYyoZrT/MagcvWPOzUmTfXJyjgRTidMH762Qf/zvlF99qkJ/ex1tLDNx/BkqHv3ZXTf/qzGsk6rWj39+FX1um516oI+26RvWtPma02bryB06hkO9UpfXs+eyOu5E3l1t3rasiRBqzxKbiLn9CffHVUudPr1G5qoWyEz09JGTycrIBM9Afwi2T8QqDllzBcJoOg2LUnoxd6o++rtm+vKXRxgTn3joTobK6seXNee0PddUqevvjCpBw9m9cb1jHGdy8nRQN96JaOHD2WVD6UrViT0ti112rzEL/qFD98zrW3ztbbN10gm1J7+aDx9z1BWTSnT1s6oVR44H/NJbhw6p/v2Z3VsONRtG1Pa05fXHmasgKLp5I4M5TWec2oo44VofvkWycGBfMV0GQRQXdrrPa1v9/XggazeuilNCyIq0mQ+Gu+8pbPycsHcsSWtF0/l9blnJrSq1deGDk6PpjjntLc/0N17M3rqaE6+J12/JqW3bU5rRcvifJbNaU/bV3q6YnlCR4ZCvdyX15PH8nrmeF7HRkLdtjGt1WVOjIjq4JzTEz05HR0O9YbVSa1cpGMc8bC00ZeU18nRQOvLOJUgNdQiGMmE6h93WtfGSTWA0rh1Q0p//+SEXu7Nxy4ZV6mne7xlAy2qlaC/MP69EhLYzeSZ6T9f26Df/fao/uLRMf33NzertcxJimYq5fdktu9ILnB67EhW9+7L6vBgoPqk9Patad22Ma22+vLsG98zrWv3ta7d18BEqJd683rsSFYPHsxqc6ev2zamddXKpBIe51tYmBd7A73cF+iSpQlt6SRMwmt1NJgSXjQOfn17+crBkbkIDg5EczTTAg+gVK5dndKXn5/UvfuysQvgURv6xqMAvqNC68KmdJSo6n/eP6K/fHRMv/bGppoMBE+Ph7r/QEYP7M9qNOu0sjka3/6GNamKGgbYXu/p+jUp/cINST10MKtv78vqrx4bV3u96Zb1ad24NlWxxxoq0+HBQDuP5rSmzdP2lYRIeD3PTF2Nnk6VeRw8R+cimArgqUgAlErKN928LqVvvpJR/3jIBUNUnL7xUK11plQFZ3Je3ebrg1c36JOPj+tTO8f1U9c01ESytImc09PHcnrkcFYvnorG+l6xIqHbNqV1cVeiooflNKY8vW1Lnd66Oa3nT+T17X0ZfW33pP5196S2LU3oxnUpbV+ZJIM4zqpvPNSDB7PqbDDdtDZV0cc8yqur0dPzJ/LKh65sF3kJ4BfBocFAy5u8ij5pARB/t25I65uvZHT//ox+8NL6cz8BWCTOOfWPh+qOwXjS61an1DcW6p93TaohOaEfvbK+Kk/mR7Ohjg6F6hkO9I/PTCh0UlPKdOmyhDYt8dWc9tQ7Gqp3NFvuos6LZ6YrViR1xYqkekcDPXwoq4cPZ/XJx8fVkDRduzqpG9emtL69+An3EG+j2VD37cuoLml604Z0Tfa8wfx11HtykgYmnLrKlJSVAH4RHBzIayvjaACUWGejpytXJvWdA1l978V1XDRExRjPSZP5+Awle8fWtMZzTt98JaOGlOkHLon3BTHnnEYyTr3joU6OhjoxEmo06yRJzYWM7mvbfHU1elUR3HY1+fq+S+r1rm11eulUXg8dyurhg1ndvz+rpY2erluT1BtWp7S8ufIvKKG0Mnmnb+/LKu+kt2+4sGkQURuWNETHSP94qK4yTQ9OVFliQ5OhBiac1rZTSQAovds2pvT0sZweP5LVTetI3obKMDgZjRdsr4/HybGZ6T2X1mki5/TvL2UUhNIPXloXm+70mbxT33iovrFQfeOhesdCZaPRfEr60vImTxd3JbSixVNr2qoiaJ+NZ6Zty5Latiyp8WyoJ4/l9OjhnL7+Ykb/9mJG69p9vWF1UtesSpUtMR/KJxc43bsvo+GM020bOQYwPw1JUzoR5QspFwL4Epsa/76uPaHjw0GZSwOg2l3UldDKFk93783oRsbxoUIMTkQnOpWW2f1szEw/dlW9PJO++UpGAxOhfvLqhoocSz2SiVrWT45GQftQxp15rK3OtKbNV1eDp85GT611FpsLEcXUkPJ087q0bl6X1sBEqMePZPXYkZy+8NykvvjcpC5emtB1q5Pa3p0q6/zOxbLYsxbETRA63X8gq/5xpzeuT2kFvTEwT2amjnpP/RME8FXr0GAgk7SmzSeAB1ByZqY7ttTpUzvH9dyJvK5YQUZ6lN/gpFNdQhWVxXw+PDP96JX16mjw9NUXJjU4Oab/fG1D2S9EjGajbvAnR0OdGA01VugOn05IXQ2eNnT46mz0tKSB/Duzaa+PEt+9bUudjg0HeqwQzP/9kxP6h6cndMWKpN6wOqnLlpP8rhqFzunBg1kdHwl1w5qk1rYRvOP8LGnwtOtkXkHo5JchZwIBfIkdHMhrebMXu5MWAPF13eqk7tzt6esvTery5ZWdQRq1YXAyVFuMWt+nMzO9Y2ud2us9febJcf32PSP64PYGXbly8S6Ohc7p1GignuFQPUOBBidfDdiXNXm6ZGlCy5ui1vVa+74Xo6W5o97THZtT6ht32n86r10nc3ryaE4NSdPV3Um9YU1SWzoTNdlzodoEodN3DmZ1ZCjUNd1JbVpCKITzt2Qqkd2kU2cDAXzVOTgQaNtSdjOAxZPwTG/fmtY/PD2hF3vz2sa88Cgj55yGJp02LYlnAD/l+jUprW3z9cnHx/Wnj4zpxrUp/cAldSUbNzuRc9p1MqdnT+T03PG8RrNOJmlpk6cd3b5WNPtqq8GAvVTMTF2Npq7GlK5Z5XR8JNRYzunxI1k9eDCr9nrTtatSun5NSqtpsY2lXBB1mz86HOraVUld1MX5ORamoxC0nx4P1VmG5KwcuSU0MBFqaNJpXTu7GcDiunFtSv/24qS+/lKGAB5lNZp1yoeKbQv8dCtbfP3mm5v0tV2T+taejJ7oyeq2jWndsSWtpvSFv7+To4GeO57Ts8fzeqUvr8BFCZMuW55Qype6m32l6NFXcp7ZmSkPN7T7OjIU6MDpQN/ak9FdezJqrzdt6khofbuvugWOl6+GceRxMp5z+otHxnR0ONQbVkc9KoCFakqZUn75Etlx9JbQoUICO8bWAFhsSd90x5a0vvDcpPb05bWZkxWUyVR377a66gg8E57pPZfV643rU/rXFyf1zVcyuntvRpcvT+q6NUldtiyp9DyD7IGJUHv68trTl9fuU3mdGI1OBlc2e3rr5rSuWJHUxg5fvmclTUqGuSU80/r2hNa3JzSZdzo4EGhff15PHM3pyWM5rWrxtHFJQt0tHl3sK1T/eKg/fnhUJ0ZC3bgmqY10m8cFKnciO47gEjo4mD+TwA4AFtsb16f17y9n9LXdk/q1mxvpaouymMpAX21TNC1t8vXT1zTqHVsDfedARo8fyempYzmZpBUtnta0+VpS76kuaapLmLJ5p7Gc02jG6cRooGPDr87FnvalTUsSetPGtC5fntDSJs4bKlFdwnRRV0IXdSU0MBFqX3+g/QN5HR7Kqi4hbehIaFOHX5HHunNOmbw0lImSHk7knMZzTrlQyofR2HAzyTeT70XvtT5hakiZWtLRXzmSdV2ogwN5/cl3x5TNO/3yTY3qHS1f5nBUl44GTy/15hU6t+gX7wjgS+jwQKAVzd68r8QDQDGlE6bvvahO//TshJ45ntdVi5h0a74mck69Y4E8MyW8qMwk/awuQ5NODUmr2mzo3S2+3n9Fg957mdPLvXm90p/X4YFAL53KazjjFL46o5s8kxpTpmVNnravTGpli6/Nnb5Wt/qxDI5qWXu9px2rPG3vTujocKi9/Xm9eCrqSdFRb1rX7mtdm1+UoRXnyzmn0UyovnGn/vFQfeOhBiZCZWdMhpTwpJQv+Z7JN8lJCkOnfOg0mY/uTzFJTWlTZ4OnbCBtWuJrbbtfsb0OnHP69r6svvT8hFrqTB+9tVmrWn09MEpPFhTHkgZT6KTBCXdmTPxiIYAvocNDgbbSbRVAGd26IaX792f0pecmdOmyREVMiXRkMND9BzLa05fXseHwNSeJktTZYFrbFp0cNqUqryUL52dgMqya7vNn43umbcuS2rbs1QtlzkUtnBM5p5RvqkuInjBVxjPT6tboIsxEzunAQKCDA3k9dSz666g3rWr1tarV15L60iQdHJ4Mz7xu9D/QSMYVyie110e/qa11nlrTpqa0qT5pSnpzH4/OOWUCaSzrNJyJcjoNTIQ6MRroC89NSIryM1y8NKFLliV0ydKEOhsro+fIWDbUZ56a0JNHc7p8eUL/aUeDmstwIQXVbUmhp03/RKiORU5kR3RZIiOZUAMTjkylAMrK90w/fEW9/uihMd27N6M7ttaVrSy7T+b0H69ktPtUXilf2tKZ0NXdKY1koi6N+cBpNOt0eDDQk4WT321LE7p8eWVceMD5CwsZ6Fd0VUZdWMpx5LMlJTOLEh1Va+8DvFZ90rRtaULbliY0kgl1aDDQkaFQz5/I67kT0e/e0kZPS5s8dTV66m6Ngur5CkKnk6OhjgwFOjIYRP+HAg0V8kxMDd+4fHlS+cBpSaOn9rqFdX03iy441SVMS2YEJ5evSOqVvrx2ncxr96loyj0pmtLw0mUJXb4iqa2di/+77ZzTdw/n9OXnJzSedfqhy+p0++Z0xfYSQLw1p6OLYKfHQ2nJ4r42AXyJHBmM+ikx/h1AuV26LKkrlif0by9N6vq1qfM6YSyGgYlQ//TMhJ46llNrnekHL63TLetTaiy0rs8Mqi5bntRIJjrp3XUqalG6bnVSq1v5PY2b0UIX8lpogQema057unSZp0uXSZN5p2PDgU6Mhjo1GqpnOLpAKUXZrNvrTW11nprSpqQXDSdyip6XyUvDmVCnx0MNTr46JMM3aWWLp0uWJrSq1de69oTWtvtnhiCV8mJVe72n61andN3qlJyLptzbdTKvXadyevBgVvfuyyrtS9uWJXX58oQuW55Ue4nzAuzpy+uruya0py/Qxg5fP35TA41oKCkzU3u9p9MTM/sRlh4BfIkcngrgOeEEUAHee3m9fuvuEX3xuQl9+NrGRXlN55zu35/VV16YUBBKP3BJ1Boyn1aZ5rSnG9amtGlJoEeP5HTf/qyuWpHQpcsSdEGOkVcz0NN9FbWrLmHa0JHQho7o/mTOaU27r56hUCdGAg1MhhqccDo2EihfSCpnheelE1JT2tPWroQ66j0tb/a1us3XimZPiQrIm2BmWtnia2WLr7duTisbOL10Kq9nT+T03PGcnj6WkzShtW2+Ll+R0OXLk1pXpLHzQej0wsm8/uPlSe3pD9SUMn1we71uXJei1R2Loq3edOB0IOfcop6bEMCXyOGhQB31VpbkJQAw0/JmX997cZ2+tntSly3P6vo1qZK+3mg21N/vHNczx6Nu8D9+Vf2CMmsvbfL1zq2evns4p6eP5zWSdXrD6iQnZzExOBkNj2ilBR44oy5punhpUhcvLXdJii/lmy5fkdTlK5JyVzodHQ717PGcnjuR09dfzOjfXsyoPiFt7kxoS2dC69p9rWnzz/TIOpexbKgDpwM9dSya9WEk49RRb3r/FfW6eV2KxNFYVG11nnJhoImc1FDa06rXIIAvkcODAd3nAVSUd16U1q5TOf3j0+Pa2OGXbKqqvf15/fXjYxqacHrf5XV6y6b0BV2Z9j3TTWuTakqZnj+Z10TO6db1KbJ2x8DghFNTyshhAFSR8+2e35Qy3bAmpe0rnY4XhhIcHAj03In8mXUaklJjylNTyrRpSUJJX0p4pnzoNJJxGsmEOjYc6tRYdFEw5UtXrEhqx6qkrlyRrIjeCKg9U8PDBidDNaQWL+4jgC+BTN7pxEioHasqb8omALXLM9NPX9Ooj90zok8+Pq6P3tpU1JOe0Dnd9UpG/7xrUh31nn7j1kat7yhONWNmumplUg0p02NHcnr4cE43r03Snb7CDdZIBnoA51aXMK3vSGj91FCCvNPp8VCnJ6Is96NZp96xUMdGMsoHUuCisf5NaVNzyrS6zddN61Ja2+5r85IEre0ou6nhYYOTTitbFu91CeBLoGcokBPj3wFUniUNnn5ie73+8rFx/ePTE/rA9vqidEcfyYT6uyfG9fzJvK7uTuqDVzeoIVn8k6utnQnlAqenjuWV9qVrVxHEV6rQOQ1nnLpbqAuBmUqZZC4u6hKvjp+fbmpGh9A5mZh6EZWrLhnN1jA1XGyxEMCXwJEhMtADqFw7VqX0PUOBvv5SRr4n/diV9Rd0gvT8iZz+/slxjWWdfuzKet26IVXSE65LliY0mZN29+ZVnzRdvpzeTpVoLBtlzG6hBR7AApDrBHHQWudpcIIAPvYODwZqSL5+3kwAqBTft61OQSj9xysZ+Sa9/4rzD+IzeacvPTeh+w9k1d3i6SM3Ni3KtD1mpqu7E5rIOz1zPK+Oek+r6PFUcYYzUQb6lnRtnITTogoAtaetzrT/dLiomegJ4EtgKoEdXX4AVCqzaD72wEnf2pPRqdFQP3ZVgzobz33hMXRODx/K6mu7JjU06fS2zWl9/yV1i5qozMx0/ZqkhiZDPXgoq3duSauFqcoqykghgG9mNhYAQJWaykQ/nnNqTC3OeRC1apEFoVPPUKDVtAYBqHBmpvdeVqcfuaJer/Tl9Vt3D+vuPRlN5Nys649nQz18KKvfuWdEn35yQu31nv7rLU167+X1ZckynvBMt65PyZN0/4GscsHs5UZ5DGdCJTypnqYCAECVaj2TiX7xzkGoVovsxGioXMj4dwDxYGa6bVNaV6xI6h+fHtcXnpvQl5+f0KYlvjZ3JuRclCn4xVN5nRgNFTqpOW1647qk1rb5OjYc6NhwULbyN6U93bwupXv3ZfXokZxuIjN9xRjJOLWkjc8DwHlhOAripK0+ag8fmgwXLWkrAXyRHRkkgR2A+Ols9PRLNzZqT3+g50/k9PyJvL7+UkaeRZmCE550UVdC69p8LWmorKBsZYuvK1Yk9MzxvFa2eNpYpKnrcGGGM04d9XT0AwBUr7pEIRP9BC3wsXVkKFDCk5Y3c9ICIF7MTFs6E9rSmdAPXirlQyffouWV3iJy6bKEjg2HeuxITksbPcZdl1nonEYzTuvaKudCDwAApdBW5y3qVHKc4RRZz1CgFc2eEh4nLQDiLeFVVkv72XhmumldUp5JDx7MKnSMhy+n0YyTU+1koAcA1K7WOtPQpJNbpHMPAvgiOzocqJsEdgCw6JpSnq5fnVLfuNOzx/PlLk5NGz6TgZ4AHgBQ3drqPeVCaWyOJMDFRgBfRKPZUAMTTqsXKYEBAOC11rb72tjh64WTefWNL153NrzWyJk54DnNAABUt7ZCJvqhRRoHT81aREeHopNFWuABoHyu6U6qLik9fCirIKQrfTkMZ0IlfSlNph0AQJVrq4tC6sUaB08AX0Q9Q1EG+lUE8ABQNqmE6YbVKQ1NOj1DV/qyGGYKOQBAjUgnTPWJxZsLngC+iI4OB2pI2pluFACA8uhu9bVpia/dp/La108Qv9hGMo6ZAAAANaOlzjuT/6XU6NxWREeGAq1u9WhxALDoKn2at3LY0Z3UseFQn9o5rt9+S7NSPr/NiyEIncayThs62N8AgNrQkjYdKfTGLjUujxdJ6BwZ6AGggqR80w1rkjoxGupfdk2Wuzg1YyTLFHIAgNrSnDZN5qVsvvSt8ATwRdI/HiqTl1aRgR4AKsbKFl+3rk/p7j0Z7emjK/1iGDkzhRynGACA2jA168pidKOndi0SMtADQGV6z2X1WtLg6VM7x5VZhCvjtW64kIWXFngAQK1oKeRAG86UPhM9AXyRTI156KYFHgAqSn3S9JNX1+vUWKivvjBR7uJUvZGMU8qPsvICAFALmlMmEy3wsXJ0OFBng6f6JCcsAFBpLlqa1Js3pnTvvqxe7qUrfSlNTSEHAECt8D1TY8oI4OOkZyjQqlZ2JwBUqvdcWq+ljVFX+km60pfMSJYp5AAAtaclbRqZpAt9LOQCp5OjIePfAaCCpROmn9zRoP7xUF95nq70pRA6p/GsU1OKFngAQG1pqYta4J0rbSMBAXwRHB8JFDoy0ANApdvSmdBbNqV13/6sdp/Mlbs4VWesMIVcE13oAQA1piXtKRdKkyUeqUcAXwQ9hQz0q2iBB4CK9wOX1ml5k6e/f3Jc4zm60hfTaLYwhRwt8ACAGtOcXpxM9ATwRdAzFCjhScua2J0AUOlSvulD1zRocNLp88+Ol7s4VWW0kLyHLvQAgFrTciaApwt9xTs6HGhFsy/f44QFAOJgQ0dC79ia1ncP5fT0MbrSF8to1skkNRDAAwBqTGPK5Jk0PEkAX/HIQA8A8fO9F9dpTZuvzz41rpESd3erFSNZVziBIYAHANQWz0zNaaMLfaUbzYQanHSMfweAmEl4pg/taNB4zumzT02UPGtsLRjNhHSfBwDUrJa0aSTOXejN7A4ze9nM9prZR2d5fI2Z3WdmT5vZc2b2jlKWpxR6hgNJZKAHgDha1err+7bV6aljOT16hK70F2o068hADwCoWS1pT8MZp7CEjQIlC+DNzJf055LeLmmbpPeb2bYZq/2mpC85566S9D5Jf1Gq8pTK0UIGeuaAB4B4etuWtDYt8fW5Z8Z1epyu9AuVD50m8ySwAwDUrpa0KXTSeDaGAbykayXtdc7td85lJX1B0rtnrOMktRRut0o6VsLylETPUKDGlKmtjhMWAIgjz6Ku9GEo/f2T4yW9al7NyEAPAKh1zYuQib6UAXy3pCPT7vcUlk33MUk/ZmY9kr4h6RdKWJ6S6BkOtKrFk5GwBwBia2mTr/deXq/dp/K6b1+23MWJpTNzwNOFHgBQo1rqovA6rgH8fLxf0qedc6skvUPSP5jZ68pkZh82s51mtrO3t3fRCzmX0DkdHQpIYAcAVeCW9SldvjyhLz8/oaOF/CaITK+Hh07PXg9PBfBNqXKfWgAAUB71CSnhqaSz25Sylj0qafW0+6sKy6b7kKQvSZJz7hFJdZI6Z27IOfdJ59wO59yOrq6uEhX3/PWPhcoEjH8HgGpgZvrg1Q2qS5r+5vFx5QK60k+ZXg+3dsxeD49mnHyT6hKLXDgAACqEmakpZRqJ6Rj4JyRtNrP1ZpZSlKTuzhnrHJZ0mySZ2cWKAvjKaWI/h57h6MoKGegBoDq01nn64PYGHRkK9LXdk+UuTqyMZkM1pY0hZQCAmtactjN5YUqhZAG8cy4v6ecl3SXpRUXZ5neZ2cfN7F2F1X5V0k+b2bOSPi/pgy5GE/H2DEVdLFcSwANA1bhyZVK3rE/prlcyeqmXqeXmayTrSGAHAKh5TSnTaNapVGFtSTu6Oee+oSg53fRlvzXt9m5JN5ayDKXUMxSoq9FTfZITFgCoJj98eb1e6s3rb58Y1++8pVmNjOs+p9Gs09JG9hMAoLY1pz3lw0CTeak+WfztU9NegKPDgbpb2IUAUG3SCdOHr23Q8KTT556ZKHdxKl4m75QLmEIOAIDmQl1YqkR2RJ8LlAucTo6GZKAHgCq1rj2hd22r02NHcnr0MFPLnc2ZDPRpTisAALWtqTCd6miJEtlR0y7QsZFAoRMBPABUsXdsTWvTEl//+My4+sZKNyVM3L06hRwt8ACA2tZ0pgU+hmPg4+iB/Zl5rbevPy9JOjYczPs5AIB48cz0U9c06GP3jOhTO8f0a29skkeW9dcZLXQTbCaABwDUON8zNSRLN5UcLfALNDDp5JnUkuZkBQCqWVejrx+5skEv9wW66xUu2M5mNOuU8qVUgjoRAIBSTiVHAL9AAxOh2uqMlhgAqAE3rEnq6u6k/mXXpA4N5stdnIozmnVqpPUdAABJUTf6kSxJ7CrK4ESotnp2HwDUAjPTB7bXqzlt+pvHx5XJl+aqelyNMQc8AABnNKdNEzkpHxb/fIEx8AswmXeayEvtdZysAEClK2aekh3dSd2zL6s/fnhU161O6ZYN6aJtO87Gck7LmrioDQCA9Goiu9GMU1t9cWNGatsFGJyIukO00wIPADVlZYuvi7t8vdwX6OhQUO7iVIRsEM0BTxd6AAAizYVpVUsxlRwR6AIMTEQfBF3oAaD2bF+ZVFud6buHsxrJMLXceOHkhAAeAIBIcwmnkiMCXYCByVBpX6pnAAIA1BzfM928LqVMIH3mqQk5V9vj4cdyhQA+SQAPAIAkpRNSwlNJEtkRwC/AVAI7IwM9ANSk9npP21cm9PSxnB46mC13ccpqjBZ4AABew8zUnCrNVHIE8OfJOafBSaf2IicjAADEy8VdCV3cldDnn53QydHaHQ8/lnUySfW0wAMAcEZz2jTCGPjyG8065UOpvY5dBwC1zMz0n3Y0yPdMf/vEuIISTBUTB2M5p/qkyaNXGgAAZzSlPY1mXNGH2s0rCjWzfzazd5pZzUetJLADAEzpaPD0ge312n860DdeLt50dXEynnV0nwcAYIamlClw0kS+uNudbxq2v5D0k5L+xMy+LOnvnXMvF7co8TA4GSUiaGMOeACoeVNzzK9r83Xni5MKnVNbkXpoxWWO+bGs05IGLmoDADBdc3oqE32ohqRftO3Oq8Z1zt3jnPtRSdslHZR0j5l918x+0sySRStNDAxMODWlTEmfAB4AELlmVVIJT3rkcK6mstI75zSWowUeAICZpqaSK3Yiu3lfMjezJZI+KOmnJD0t6Y8VBfR3F7VEFW5gIiSBHQDgNeqTpmtWJdU7FurlvtpJaDeZl0JHBnoAAGaaqhunplstlvmOgf8XSQ9KapD0vc65dznnvuic+wVJTUUtUQXLh04jGad2xr8DAGbY0O5rZbOnp47lNFqCeV8r0dRJSQMZ6AEAeA3fM9UnytcC/zfOuW3Oud9zzh2XJDNLS5JzbkdRS1TBhiadnFS08Y0AgOphZnrDmmhU2RM9uTKXZnEwBzwAAHNrTJlGizyV3Hwj0f9vlmWPFLMgcTA4EbWo0IUeADCbppSny5YldGQo1NGh6u9KP04ADwDAnJpSXtG70J81C72ZLZfULanezK6SNFVDtyjqTl9TBiacfHs1oyAAADNtW5rQvtOBHu/J6V3NnnyveuuMsWxUL6aLl1wXAICq0ZgyHR6K5oI3K875wLmmkXubosR1qyT94bTlI5L+36KUIEYGJkO11pm8Iu18AED18T3TtauSumdfVrtO5XX58uqdrGUqA32xTkoAAKgmTSlTWJgLvqFIpwNnDeCdc5+R9Bkz+0Hn3FeL85LxNTgRamULzQwAgLNb2eJrbZun50/ktaHDV1OqOnOnjGVDus8DADCHxjNTyRVvLvhzdaH/MefcP0paZ2a/MvNx59wfzvK0qjSZd5rIS211nKgAAM5tR3dSPUMZPX0sr5vXpcpdnJIYyzmtJLErAACzapqaSq6IiezOVes2Tr22pOZZ/mrGqwnsOFEBAJxbY8rTtqUJHRgI1DdefdPKBaHTRI4EdgAAzOVMC3wRA/hzdaH/68L/3ynaK8bUwES00wngAQDzdcmyhPb05/Xk0Zxu35SqqrHiEzky0AMAcDZJ35T2F7cFXpJkZv/LzFrMLGlm95pZr5n9WNFKEQMDk6HSCanuXGn/AAAoSPmmy5cndXI01NHh6mqFn5oWpzFJAA8AwFyaijwX/Hybk293zg1L+h5JByVtkvTrRStFDAxOhGqv86qq9QQAUHpbOn21pE1PHsspdMWdC7acxpgDHgCAc2pMWVHngp9vAD/V7vxOSV92zg0VrQQx4JzT4KRTWz0nKQCA8+OZ6aqVSQ1NOh04HZS7OEUzFcA30AIPAMCcGlOm0Uw0F3wxzDeA/7qZvSTpakn3mlmXpMmilCAGRrJO+ZDx7wCAhVnT6qm93vTcyXzVtMKP5ZxSfjS+DwAAzK4p5SlwUiZfnO3NKyJ1zn1U0g2SdjjncpLGJL27OEWofINTCeyYKgcAsABmpiuWJzWSqZ5W+PGso/s8AADnUOxM9OeTku0iRfPBT3/OZ4tSigo3UJhCrpU54AEAC7R6Wiv8+g5fXsxzqowRwAMAcE7T54LvbDzHyvMw3yz0/yDpf0u6SdI1hb8dF/7y8TA4Gao5ZXQTBAAsWLW1wo/lCOABADiXpjMt8MWZjWa+LfA7JG1zxRp5HzMDE07tJLADAFygammFzwVO2YAM9AAAnEsqYUp6xetCP99B3S9IWl6UV4yZfOg0knFqI4EdAOACmUXzwo9knA4Pxnde+KnpcMhADwDAuTWl7MzsLRdqvi3wnZJ2m9njkjJTC51z7ypKKSrY0KSTEwnsAADFsbrVU3PKtPtUTmvbPFkMW+GZAx4AgPlrTNmiJ7H7WFFeLYamEtgxBzwAoBg8M128NKHHe3LqHQu1tMkvd5HO2zgBPAAA89aUNp0cLU7Pu/lOI/eApIOSkoXbT0h6qiglqHCDE06+Sc1pTlIAAMWxscNXypd2nyrSpLCLbCznZKILPQAA89GYNOVCKZu/8Fb4+Wah/2lJX5H014VF3ZK+dsGvHgMDk6Ha6iy2iYYAAJUn6Zu2diZ0eCjUcCZ+Y+HHsk71SVE3AgAwD02pKOwuRjf6+Q7s/jlJN0oaliTn3B5JSy/41WNgYCIkgR0AoOi2diXkmfRiDFvhozngqRsBAJiPxvTUVHKLF8BnnHPZqTtmlpBU9VPKTeacJvNiCjkAQNE1JE3r233tOx0oG8SrSh3LObrPAwAwT02FOrMYmejnG8A/YGb/r6R6M3urpC9L+rcLfvUKNzBZSGBHBnoAQAls7UooH0r7TwflLsp5Gc86EtgBADBP6YSU8KTR7IUPm5tvZPpRSb2Snpf0nyV9Q9JvXvCrV7iBiegKSTtd6AEAJdDZ4Kmj3rSnLy/n4tEK75wUuCghDwAAODczU2OR5oKf1zRyzrnQzL4m6WvOud4LftWYGJwIVZeQ6jlJAQCUyJbOhB49klPfuFNXY+XXN6FjCjkAAM5XY7I4c8GftWnZIh8zsz5JL0t62cx6zey3LviVYyDKQE/rOwCgdNa3+0p40it98UhmNzVcnwAeAID5a0oXpwX+XNHpRxRln7/GOdfhnOuQdJ2kG83sIxf86hXMOaehSUcCOwBASSX9KJndwYGgKPPDllpYKCJJ7AAAmL/GpCkTSLkLTFx7rgD+xyW93zl3YGqBc26/pB+T9IELeuUKN5J1yodiCjkAQMlt6UwocNL+gcpPZhc6yTOpbl6D8AAAgBS1wEsXnon+XNFp0jnXN3NhYRx88oJeucKdSWBHF3oAQIktafC0pMH0SgyS2YUu6j5vRgs8AADz1ZQqzlzw54pOswt8LPYGJwpTyNGFHgCwCDZ1JDQ46c5cQK5UoXNkoAcA4Dw1pqLQ+0ID+HN1gLvCzIZnWW6S6i7olSvcwGSo5rQp4XGSAgAovbXtvh7vyWn/QKCOhsrt/RWEJLADAOB81SeiIWgX2oX+rAG8c86/oK3H2OCEU3sdJygAgMVRlzB1t3g6OJDX9pWVO8DcOQJ4AADOV7Hmgq/cS/xllAuchjOOBHYAgEW1ocPXeE46ORqWuyhzciIDPQAACxHNBX9hdTwR6iwGJ6OrIh0E8ACARbSq1VfSk/afruxs9LTAAwBw/ooxFzwR6iwGCgnsmAMeALCYEp5pTZuvw4OBshc4T2wpkcQOAIDz15QyTeSlIFx4HV/SAN7M7jCzl81sr5l9dI513mtmu81sl5n9UynLM18DE6GS3qup/gEAWCwbOnzlQunZ47lyF2VOtMADAHD+purPC2mFL1kAb2a+pD+X9HZJ2yS938y2zVhns6TfkHSjc+4SSb9cqvKcj9MTTu31HnPcAgAW3bImT/VJ6ZHDlTlbq2dS0qd+BADgfBVjLvhStsBfK2mvc26/cy4r6QuS3j1jnZ+W9OfOuQFJcs6dKmF55sU5p4GJkO7zAICy8My0rs3XrpN5TeQqrxs9s6sCALAwjRUewHdLOjLtfk9h2XRbJG0xs4fN7FEzu2O2DZnZh81sp5nt7O3tLVFxI6NZp3xIAjsAQPmsafOVD6XnT1RGN/rp9XCQr8yeAQAAVLqGpMlUoV3o5ykhabOkWyW9X9LfmFnbzJWcc590zu1wzu3o6uoqaYFOT0Q7s50AHgBQJl2NnlrSpiePVkYAP70eTqfS5S4OAACx5Jmp4QLngi9llHpU0upp91cVlk3XI+lO51zOOXdA0iuKAvqyGZgIZZLa6EIPACgTz0xXrUzq+RO5istGTxd6AAAWrillFduF/glJm81svZmlJL1P0p0z1vmaotZ3mVmnoi71+0tYpnM6PRGqpc6U4AwFAFBG27uTygTS7pP5chflNTw6qAEAsGCNlRrAO+fykn5e0l2SXpT0JefcLjP7uJm9q7DaXZL6zWy3pPsk/bpzrr9UZZqPgQmn9jrOTgAA5XVRV0INSdOTxyprzDkJ6AEAWLimlF1QktpEEcvyOs65b0j6xoxlvzXttpP0K4W/shvPhhrLOm1ZwtkJAKC8Ep7pyhUJPXMsr3zoKqZnWIUUAwCAWGpMmS5kcBxNzdMcGQolSR0N7BYAQPlt705pPOf0cm/ldKP3jAgeAICFakxeWD1a0hb4uDkyFEgiAz0AoPwe2J8ptLxLX39pUn1jYVG3f8sGsskDALDYmlIXFsATqU5zZChQXUKq57IGAKACJDzTymZPPUOholFnAAAgzhoJ4IvnyGCg9npPRvdAAECF6G71NZ5zGpwkgAcAIO58zy6owZgAviAInY4OB3SfBwBUlO4WX5LUUxjmBQAA4u1CWuGJVgtOjIbKh1JHPa3vAIDK0ZA0ddSbjg4Xdww8AAAoj8bUwsNwAviCI4MksAMAVKbuFl+9Y6EyebrRAwAQd7TAF8GRoUAJT2qtowUeAFBZuls8OUnHRuhGDwBA3F1IJnoC+IIjg4FWtvjMbwsAqDidjZ5SvuhGDwBAFaAFvgiODAVa3eqXuxgAALyOZ6buFl/HhgOmkwMAIOZogb9AQ5OhhjNOq1vZHQCAytTd4mkyL/WPE8ADABBnjUkC+AtypDA1Dy3wAIBKtXJqOrlhxsEDABBnqQQB/AWZykC/qo0AHgBQmeoSps4G0/ERxsEDAFCrCOAVtcB31JuaLmA+PgAASm1Fs6++sVDZgG70AADUIiJWkcAOABAPK5qj6eROjtIKDwBALar5AD4XOJ0YCek+DwCoeF2NnnyTjjMfPAAANanmA/ijw4FCJ62hBR4AUOF8z7S0yWMcPAAANarmA3gy0AMA4mRFs6ehSafxHOPgAQCoNQTwg4HSvtTVVPO7AgAQAyuaowvOdKMHAKD21HzUemQoUHerL88WPhcfAACLpaPelPalE3SjBwCg5tR0AB86p8ODgdaRwA4AEBNmpuXNvo6PBHKObvQAANSSmg7ge0dDTealNe0E8ACA+FjR7Gk8Jw1nCOABAKglNR3AHxqMxg+upQUeABAjK5qj6pts9AAA1JaaD+ATnrSyhQAeABAfzWlPjSnTiVES2QEAUEtqO4AfCNTd4ivhkcAOABAvy5o8nRoNGQcPAEANqdkA3jmnQ4MB3ecBALG0rMnTZF4amiSABwCgVtRsAN8/Hmo857SWBHYAgBha3hRV4SdHGQcPAECtqNkAngR2AIA4a0qZGpIE8AAA1JKaDuA9k1a1EsADAOLHzLS0ydfJUeaDBwCgVtRuAD8QaGWLp6RPAjsAQDwtb/I0kZdGmA8eAICaUJMB/KsJ7BLlLgoAAAu2jHHwAADUlJoM4AcnnUYyjvHvAIBYa0mb6hIE8AAA1IqaDOAPDUQJ7NYQwAMAYszMtKzJ1wnmgwcAoCbUZgA/GMgkrSaABwDE3LImT+M5p9EsATwAANWuNgP4gbyWN3uqS5DADgAQb4yDBwCgdtRcAO+c08HBQOvaaX0HAMRfW50p5UunxgjgAQCodjUXwA9MOA1NOq1vJwM9ACD+zExdjZ56CeABAKh6NRfAHxzIS5LW0gIPAKgSSxs9DU06ZfKMgwcAoJrVYAAfyDMy0AMAqsfSwjh4WuEBAKhuNRnAd7d4SvkksAMAVIclDZ48I5EdAADVrqYC+FcT2DH+HQBQPRKeqaPeaIEHAKDK1VQA3zcWaizryEAPAKg6S5t89Y2HCkLGwQMAUK1qKoA/MBBIktYTwAMAqszSRk+hk05P0AoPAEC1qqkA/uBAoIQndbcSwAMAqktXY1SlMw4eAIDqVWMBfF6rW30lPBLYAQCqS33S1JxmHDwAANWsZgL4sJDAju7zAIBqtbTRU+9YKOcYBw8AQDWqmQD+xEioTF5aSwAPAKhSSxs9Teal4QwBPAAA1ahmAviDUwnsOphCDgBQnabGwffRjR4AgKpUMwH8gYG80r60orlm3jIAoMa01pmSvhgHDwBAlaqZaPbA6UDr2n15RgI7AEB1MjN1NnjqHSeABwCgGtVEAJ8LnA4PBtpA93kAQJXravQ0OOGUCxgHDwBAtamJAP7QYKDASRs6SGAHAKhuXQ2enKR+WuEBAKg6NRHAHzidl0QCOwBA9essJLJjHDwAANWnJgL4/acDtdeb2utr4u0CAGpYOmFqSRvj4AEAqEIljWjN7A4ze9nM9prZR8+y3g+amTOzHaUox/7TjH8HANSOrkZPfWOhnGMcPAAA1aRkAbyZ+ZL+XNLbJW2T9H4z2zbLes2SfknSY6Uox0gmVN94yPh3AEDN6Gz0NJmXRrME8AAAVJNStsBfK2mvc26/cy4r6QuS3j3Ler8r6fclTZaiEPtPB5JECzwAoGZ0NTAOHgCAalTKAL5b0pFp93sKy84ws+2SVjvn/r1Uhdh3Oi/PpLVttMADAGpDW70p4Ul9jIMHAKCqlC2rm5l5kv5Q0q/OY90Pm9lOM9vZ29t7Xq9z4HSg7hZf6YQtsKQAAMSLZ6YlDV7RWuCn18NDp8+vHgYAAMVTygD+qKTV0+6vKiyb0izpUkn3m9lBSW+QdOdsieycc590zu1wzu3o6uqadwFC53TgdJ7x7wCAmtPV6On0uFM+vPBx8NPr4daO+dfDAACguEoZwD8habOZrTezlKT3Sbpz6kHn3JBzrtM5t845t07So5Le5ZzbWawCnBgJNZEXATwAoOZ0Nnhykk7TjR4AgKpRssxuzrm8mf28pLsk+ZI+5ZzbZWYfl7TTOXfn2bcwu5GM0wP7M/Nad29/XpLUPx7O+zkAAFSDrsZXE9ktbeJCNgAA1aCkqdmdc9+Q9I0Zy35rjnVvLfbr946FSvlSa5rx7wCA2lKfNDWljER2AABUkbIlsVsMvWOhuho9mRHAAwBqT2ejp94x5oIHAKBaVG0An807DU66M10IAQCoNV0NnsZzTmNZgngAAKpB1Ua3vYUugwTwAIBaNVUH9hVpOjkAAFBeVRvd9o6FMkVZeAEAqEXt9SbPXr2oDQAA4q1qo9tTo6Ha601Jn/HvAIDa5HumJQ2eemmBBwCgKlRlAB86p77xkO7zAICa19XgqX88VBAyDh4AgLirygh3YMIpH0pLCeABADWuq9FT6KK6EQAAxFtVRrhTXQW7mqry7QEAMG+dhYvZjIMHACD+qjLC7R0LVZ+UGpOMfwcA1LbGlKkhSSZ6AACqQdUG8EsbPZkRwAMA0NlIIjsAAKpB1QXw4zmn0axTV6Nf7qIAAFARuho8jWadJnKMgwcAIM6qLoDvHS2MfyeBHQAAkl6tE/sYBw8AQKxVXZR7cixQwpM66uk+DwCAJHU0eDKJbvQAAMRc9QXwo6E6Gzz5HgE8AACSlPBMHQ1GIjsAAGKuqgL4bOA0MOG0lOnjAAB4jc4GT33joULHOHgAAOKqqiLdqfHvywjgAQB4ja5GT/lQGpwggAcAIK6qKtI9ORbKFLUyAACAV5HIDgCA+KuqSPfkaKglDaakz/h3AACma0qZ6hIksgMAIM6qJoAPQqf+8VBLm5j/HQCAmcwsGgdPAA8AQGxVTQAfJeZh/DsAAHPpavQ0lHHK5BkHDwBAHFVNtHuykMBuaWPVvCUAAIqqk3HwAADEWtVEuydHQ7XVmdIJxr8DADCbqSSvjIMHACCeqiKAD51T71jI/O8AAJxF0je11Rnj4AEAiKmqiHgHJpzyobSM7vMAAJxVV6NHF3oAAGKqKiLeEyOBJGlZMxnoAQA4m65GT9mg3KUAAAALUR0B/GiolrSpIcn4dwAAzqaT3moAAMRW7Gvx0DmdGg21nPHvAACcU2valKTDGgAAsRT7qPf0uFMulJY1x/6tAABQcmZ2Jhs9AACIl9jX4CdGo4F8y5toTgAAYD666EYPAEAsxb4GPzESqrXOVM/4dwAA5oUAHgCAeIp1DR46p1NjjH8HAOB80IUeAIB4inUN3j9emP+d7vMAAMxbOkGvNQAA4ijWAfyZ+d9pgQcAAAAAVLlYR74nRkO1Mf4dAAAAAFADYhvAh86pdyyk9R0AAAAAUBNiG/32joXKh9LyZsa/AwAAAACqX2wD+OMjoUwiAz0AAAAAoCbENvo9PhJqSYORSRcAAAAAUBNiGcBnA6e+sVAr6D4PAAAAAKgRsQzgT46GcpJWNMey+AAAAAAAnLdYRsDHRwL5JnU1xrL4AAAAAACct1hGwMdHounjfI/x7wAAAACA2hC7AD500tCko/s8AAAAAKCmxC4KzgVOkkhgBwAAAACoKfEL4EOpLiG119N9HgAAAABQO+IXwAdOy5t8mRHAAwAAAABqR+wC+NBJK1piV2wAAAAAAC5ILCPh7hbGvwMAAAAAakvsAviEJzUk6T4PAAAAAKgtsQvgkz7BOwAAAACg9sQugE/Rex4AAAAAUINiF8AnPFrgAQAAAAC1J3YBPAAAAAAAtYgAHgAAAACAGCCABwAAAAAgBkoawJvZHWb2spntNbOPzvL4r5jZbjN7zszuNbO1pSwPAAAAAABxVbIA3sx8SX8u6e2Stkl6v5ltm7Ha05J2OOcul/QVSf+rVOUBAAAAACDOStkCf62kvc65/c65rKQvSHr39BWcc/c558YLdx+VtKqE5QEAAAAAILZKGcB3Szoy7X5PYdlcPiTpP2Z7wMw+bGY7zWzn0OneIhYRAACcC/UwAACVoSKS2JnZj0naIekPZnvcOfdJ59wO59yO1o6uxS0cAAA1jnoYAIDKkCjhto9KWj3t/qrCstcws7dI+m+SbnHOZUpYHgAAAAAAYquULfBPSNpsZuvNLCXpfZLunL6CmV0l6a8lvcs5d6qEZQEAAAAAINZKFsA75/KSfl7SXZJelPQl59wuM/u4mb2rsNofSGqS9GUze8bM7pxjcwAAAAAA1LRSdqGXc+4bkr4xY9lvTbv9llK+PgAAAAAA1aIiktgBAAAAAICzI4AHAAAAACAGCOABAAAAAIgBAngAAAAAAGKAAB4AAAAAgBgggAcAAAAAIAYI4AEAAAAAiAECeAAAAAAAYoAAHgAAAACAGCCABwAAAAAgBgjgAQAAAACIAQJ4AAAAAABigAAeAAAAAIAYIIAHAAAAACAGCOABAAAAAIgBAngAAAAAAGKAAB4AAAAAgBgggAcAAAAAIAYI4AEAAAAAiAECeAAAAAAAYoAAHgAAAACAGCCABwAAAAAgBgjgAQAAAACIAQJ4AAAAAABigAAeAAAAAIAYIIAHAAAAACAGCOABAAAAAIgBAngAAAAAAGKAAB4AAAAAgBgggAcAAAAAIAYI4AEAAAAAiAECeAAAAAAAYoAAHgAAAACAGCCABwAAAAAgBgjgAQAAAACIAQJ4AAAAAABigAAeAAAAAIAYIIAHAAAAACAGCOABAAAAAIgBAngAAAAAAGKAAB4AAAAAgBgggAcAAAAAIAYI4AEAAAAAiAECeAAAAAAAYoAAHgAAAACAGCCABwAAAAAgBgjgAQAAAACIAQJ4AAAAAABigAAeAAAAAIAYIIAHAAAAACAGCOABAAAAAIgBAngAAAAAAGKAAB4AAAAAgBgggAcAAAAAIAYI4AEAAAAAiIGSBvBmdoeZvWxme83so7M8njazLxYef8zM1pWyPAAAAAAAxFXJAngz8yX9uaS3S9om6f1mtm3Gah+SNOCc2yTpjyT9fqnKAwAAAABAnJWyBf5aSXudc/udc1lJX5D07hnrvFvSZwq3vyLpNjOzEpYJAAAAAIBYSpRw292Sjky73yPpurnWcc7lzWxI0hJJfdNXMrMPS/pw4W7m1o11L5SkxDibTs34XFBy7PPyYL8vPvZ5ebzgnLt0PitSD1cEvieLj31eHuz3xcc+L49518PTlTKALxrn3CclfVKSzGync25HmYtUc9jvi499Xh7s98XHPi8PM9s533Wph8uP/b742OflwX5ffOzz8jifeni6UnahPypp9bT7qwrLZl3HzBKSWiX1l7BMAAAAAADEUikD+CckbTaz9WaWkvQ+SXfOWOdOST9RuP0eSd92zrkSlgkAAAAAgFgqWRf6wpj2n5d0lyRf0qecc7vM7OOSdjrn7pT0d5L+wcz2SjqtKMg/l0+Wqsw4K/b74mOflwf7ffGxz8tjofudz6s82O+Lj31eHuz3xcc+L48F7XejwRsAAAAAgMpXyi70AAAAAACgSAjgAQAAAACIgYoN4M3sDjN72cz2mtlHZ3k8bWZfLDz+mJmtK0Mxq8o89vmvmNluM3vOzO41s7XlKGe1Odd+n7beD5qZMzOm+bhA89nnZvbewvG+y8z+abHLWI3m8RuzxszuM7OnC78z7yhHOauJmX3KzE6Z2azztlvkTwqfyXNmtn3aY9TDi4x6uDyohxcf9XB5UA8vvguph+fknKu4P0VJ7/ZJ2iApJelZSdtmrPNfJP1V4fb7JH2x3OWO89889/mbJDUUbv8s+3xx9nthvWZJ35H0qKQd5S53nP/meaxvlvS0pPbC/aXlLnfc/+a53z8p6WcLt7dJOljucsf9T9IbJW2X9MIcj79D0n9IMklvkPTYeXxe1MPF/ayohyt0vxfWox5exH1OPVy2/U49XPz9vqB6+Gx/ldoCf62kvc65/c65rKQvSHr3jHXeLekzhdtfkXSbmdkilrHanHOfO+fuc86NF+4+KmnVIpexGs3nWJek35X0+5ImF7NwVWo++/ynJf25c25Akpxzpxa5jNVoPvvdSWop3G6VdGwRy1eVnHPfUTTLy1zeLemzLvKopDYzWyHq4XKgHi4P6uHFRz1cHtTDZXAB9fCcKjWA75Z0ZNr9nsKyWddxzuUlDUlasiilq07z2efTfUjR1SJcmHPu90JXmtXOuX9fzIJVsfkc61skbTGzh83sUTO7Y9FKV73ms98/JunHzKxH0jck/cLiFK2mzfW5UA8vPurh8qAeXnzUw+VBPVyZzve3v3TzwKN6mdmPSdoh6ZZyl6XamZkn6Q8lfbDMRak1CUXd925V1ML1HTO7zDk3WM5C1YD3S/q0c+7/mNn1kv7BzC51zoXlLhhQSaiHFw/1cNlQD5cH9XAMVGoL/FFJq6fdX1VYNus6ZpZQ1M2jf1FKV53ms89lZm+R9N8kvcs5l1mkslWzc+33ZkmXSrrfzA4qGhtzJwl0Lsh8jvUeSXc653LOuQOSXlF0IoGFm89+/5CkL0mSc+4RSXWSOheldLVrrs+FenjxUQ+XB/Xw4qMeLg/q4co0r9/+6So1gH9C0mYzW29mKUXJce6csc6dkn6icPs9kr7tCpkAsCDn3OdmdpWkv1Z00sBYpOI46353zg055zqdc+ucc+sUjXl8l3NuZ3mKWxXm8/vyNUVX/WVmnYq68u1fxDJWo/ns98OSbpMkM7tY0YlD76KWsvbcKekDhSy4b5A05Jw7LurhcqAeLg/q4cVHPVwe1MOVaa56eE4V2YXeOZc3s5+XdJeijImfcs7tMrOPS9rpnLtT0t8p6taxV1FigPeVr8TxN899/geSmiR9uZCn6LBz7l1lK3QVmOd+RxHNc5/fJel2M9stKZD06845WhYvwDz3+69K+hsz+4iiRDofJCC8MGb2eUUnwZ2FMY2/LSkpSc65v1I0xvEdkvZKGpf0k4XHqIcXGfVweVAPLz7q4fKgHi6PhdbDZ90mnwkAAAAAAJWvUrvQAwAAAACAaQjgAQAAAACIAQJ4AAAAAABigAAeAAAAAIAYIIAHAAAAACAGCOAriJkFZvbMtL+PLsJrtpnZf1nA8z5mZr9WojJ9w8zaFvC8dWb2QuH2lWb2jiKX634z2zHf5YvlAj5DM7Nvm1lL4b4zs/8z7fFfM7OPnWMbt5rZDedd6LNv82BhztezLi+89teL+drnKNe8j/lC2YYK3+OXzOx/T3vsXWf7bpvZB83sz86x/XOuM8tzPm1m7zmf50x77j1m1j7HY685jiqFmf2ymTVMu3/md8XMRs/x3JSZfcfMKnKqVZQO9fCZbVMPnwfq4cVBPUw9jAgBfGWZcM5dOe3vE4vwmm2SzrvSKYXCD5DnnHuHc27wAjd3paI5Fc/79S/wdUviHD9gbVrYZ/gOSc8654YL9zOSfmC2SvssbpV0XicOcfgxLtKx8KBz7kpJV0n6HjO7UZKcc3cu0ne7mP5Bcx9jM4+jBSvysfHLks6cOJzP74pzLivpXkk/XMTyIB6oh6mHZ0U9vLioh1+HehhnVOSPJF5lZq1m9rKZbS3c/7yZ/XTh9qiZ/ZGZ7TKze82sq7B8o5l908yeNLMHzeyiwvJlZvYvZvZs4e8GSZ+QtLFwhfIPCuv9upk9YWbPmdnvTCvLfzOzV8zsIUlb5yjv95rZY2b2dOFq4bLC8i4zu7tQ1r81s0Nm1mnR1fqXzeyzkl6QtHr6FV4z+0ChHM+a2T8Ulr3mCubMq3hmlpL0cUk/XHhfP2wzrtqa2QuF157t9f/SzHYWyvo7Og9m9n4ze76w/d8vLPMLZX6h8NhHCst/0cx2F97fF2bZ1gfN7E4z+7ake82sqfA5P1XYzrsLq877M5zhRyX967T7eUmflPSRWcryus/VzNZJ+hlJHym89s1zfTYWXQl/0MzulLS7sOxrhWN0l5l9eP57+fXM7Foze6RQvu9O+778rb3aktZrZr89136c41iY9Zg/12c3nXNuQtIzkroLzz1z1d7MfqhwXDxrZt+Z5X29s/C+5jyZK+zzPym87/1T+98if1Z4T/dIWjrtOVeb2QOF/X+Xma2ws/zWSLpT0vvnKMKZ46iwD18ys8+Z2Ytm9hUrXH2f7TULy+83s/9rZjsl/ZKZXVN4L8+a2eNm1lz4Dv3BtGP6Pxeee2vh+V+Z9rpmZr8oaaWk+8zsvsK6c7UozfVd+VrhvaHGne27YdTDU69JPUw9TD1MPUw9vFicc/xVyJ+kQNEPzNTfDxeWv1XSI5LeJ+mb09Z3kn60cPu3JP1Z4fa9kjYXbl8n6duF21+U9MuF276kVknrJL0wbZu3K6o8TNEFnq9LeqOkqyU9r+hKWoukvZJ+bZb30C7JCrd/StL/Kdz+M0m/Ubh9R6HsnYXXDyW9Ydo2DhYeu0TSK5I6C8s7Cv8/Lek909YfLfw/814kfXBqfxTuf2x6eRVVDOvmeP2OafvofkmXF+7fL2nHLO/5fkk7FP1QHZbUJSkh6duSvq+w7+6etn5b4f8xSenpy2Zs94OSeqaVJyGppXC7s/AZ2Hw/w1m2f0hS8/T9WPhsDyo6Nn5N0sfO8bnO3K9zfTa3ShqTtH6W/Vxf+DyWTP/8ZynvQUXH4DOFv72Svl54rEVSonD7LZK+OuO5ayW9WPh/tv145ljQWY75eXx2t04rW7ukJyUtn3lsFrbfPeO4+KCi78v3S3pQUvscx8bUNj4t6cuFz3qbpL2F5T8g6W5Fx/FKSYOS3iMpKem7kroK6/2wpE+d7bem8Nieqc9oruOosA+dpBsL9z+l6Dg622veL+kvCrdTkvZLumb65yrpw5J+s7AsLWmnpPWF/TwkaVXh/T8i6abZjqPp9/XqcTnnd6Ww33rP5zecv/j/iXp4ahsHRT089R6oh197XFAPv34bnxb1MPXwIv5VfBeaGjPhoq4+r+Gcu9vMfkjSn0u6YtpDoaKTAUn6R0n/bGZNirpSfdnMptZLF/6/WdIHCtsMJA3Z68fT3F74e7pwv0nSZknNkv7FOTcuSYUruLNZJemLhat6KUkHCstvUvRDKOfcN81sYNpzDjnnHp1lW2+W9GXnXF/heafneM0LNfP131u4Ep2QtELRj/Fz89jONZLud871SpKZfU7RSdfvStpgZn8q6d8lfauw/nOSPmdmX1N0lXE2d0973ybpf5rZGxV99t2Sls3ynLk+w5lXljuccyPTFzjnhgtXvn9R0sS0h+b6XM/H48656c/7RTP7/sLt1YUy9p9jG2+aOh7M7FZFlZIUneh8xsw2K6q4klNPMLM6RRXrLzjnDplZUnPvx+nHws2a+5ifz2d3s5k9W3hf/9c5d2KWdR6W9Gkz+5Kkf562/M2KTkZvd/PrEvc151woabcVWtsUHXufL3zXj1nUgiRFLRiXSrq78BvhSzounfW3RpJOKToBmfkZzTyOjjjnHi7c/kdFx9I353rNgqnfsa2SjjvnniiUZ1iSzOx2SZfbq61KrYr2a1bRcdVTWO8ZRScvD825p15rzu+Kcy4ws6yZNc/8nqCqUQ+/FvUw9fBM1MOzox4W9fBiIYCPAYvGAF0saVzRVcSeOVZ1iq5eDc52AjLfl5P0e865v55Rhl+e5/P/VNIfOufuLPywf2wezxk7j/JJURczr1AuT1FFNu/nFNTN9vpmtl5RZXSNc27AzD49Y93zVtjOFZLepqir23sl/SdJ71T04/69kv6bmV3mnMvPePr0ffOjiloVrnbO5czs4Bxlm/UznEXeorGO4Yzl/1fSU5L+ftqy+X6uZ/tspu/nWxVdob/eOTduZvfP8V7m63cl3eec+36LuhTeP+2xv5L0z865ewr3z7Yf53sszueze9A59z2FY+pRM/uSc+6Z6Ss4537GzK4rbO9JM7u68NA+SRskbVF0lftcMtNu25xrvfr4Lufc9a974Oy/NXV67cnklJnHkZvxuDvbaxaca7+bohO/u2aU91a99r0HOr967VzflbSkyfPYHqoU9fDrUA9TD89EPfwq6uH5ox5eAMbAx8NHFHU7+hFJf1+4cilFn9/UlbAfkfRQ4UrZgcLVu6nxN1NX8O6V9LOF5b6ZtUoaUXRVf8pdkv5ToQVBZtZtZksVXTX+PjOrN7NmRT+Ys2mVdLRw+yemLX9YUYU5dRVv1kyaM3xb0g+Z2ZLC8zoKyw8q6lYlSe/StKu808x8XwclbS9sZ7uibj+zaVH0IzZUuIL69nmUc8rjkm6xaEyhr2is0gMWjffxnHNflfSbkrYXfqBXO+fuk/RfFe23pnNsv1XSqUJl9yZF3dBme69zfYYzvayocnqNQkvDlyR9aMZrz/a5zrafz/XZTG1voHDScJGkN8yx3nxNL98Hpxaa2c8p6lb2iRnrzrYfZ5r1mD/fz67Q2vGJwrqvYWYbnXOPOed+S1KvohYQKeoO94OSPmtml5z1nc/tO4rGn/qFFps3FZa/LKnLzK4vlCE57TVm/a2x6HL9ckWf70wzj6M1U9subOehc7zmzG2tMLNrCus1W5RQ5y5JPzutPFvMrPEc73/msTmbOb8rhd+dPudc7hzbQG2gHhb1sKiHz4Z6ePbyUw+fHfXwAhDAV5Z6e+30NZ+wKJHFT0n6Vefcg4p+DH6zsP6YpGstmrLlzYoSxkjRlc0PWdRtaJekdxeW/5KkN5nZ84rGAm1zzvVLetiiBB5/4Jz7lqR/kvRIYb2vKPrhfUpR95pnJf2HpCfmeA8fU9Rt8ElJfdOW/46k2wtl/SFJJxR9sefknNsl6X8oqnyflfSHhYf+RlEF/ayk6zX7VcP7JG0r7McflvRVSR1mtkvSzysa0zfbaz6rqBvPS4X98PBs683x3OOSPlp47WclPemc+1dFXcPut6hb0T9K+g1FXZf+sbCPn5b0J+7cmTk/J2lH4TkfKJRR8/0MZ9nevysauzSb/6NoXNqUj2n2z/XfJH1/YT/frPl9NlLUlSthZi8qqlRn67p5Pv6XpN8zs6f12iu/vybpsmnfqZ/RHPtxprMc8wv57P5K0hstapWY7g+skGxJ0di0Z6e9/kuKvstfNrON59j+bP5F0Xi53ZI+q2hcmlyU2fU9kn6/8Dk9I+mGc/zWXC3p0VlaN6TXH0cvS/q5wmfbLukv53rNmRsqrPfDkv60sN7diloc/rbwPp4q7Ku/1rmv8H9S0jetkDxnNuf4rryp8N5QW6iHp6Eefh3q4blRD78e9TD1cElMJcNADJnZqHPuXFeLK4KZpSUFzrl84erfX15A90IUQeFq8Gedc28td1lQ2czsjyXd6Zy7d5bHzhxHhROjrzvnLl3sMhabmf2zpI8652YNMgCJehgXhnoY80U9jOkYA4/FskbSlyzq9pSV9NPnWB8l5pw7bmZ/Y2Ytrghzh6KqvTDbSYP02uNosQtVKhZNgfU1ThpQZaiHKwz1MM4D9TDOoAUeAAAAAIAYYAw8AAAAAAAxQAAPAAAAAEAMEMADAAAAABADBPAAAAAAAMQAATwAAAAAADHw/wNScXqWCTHZ5AAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"tmp = sns.FacetGrid(\n",
" data=score_m, col=\"Urban Heuristic Flag\", col_wrap=2, height=7\n",
")\n",
"tmp.map(\n",
" sns.distplot,\n",
" \"Expected agricultural loss rate (Natural Hazards Risk Index) (percentile)\",\n",
" bins=20,\n",
" kde=True,\n",
" color=\"#62acef\",\n",
")\n",
"tmp.set(xlim=(0, 1.0))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "1bff0654-6a88-4511-b17f-492d41023d9f",
"metadata": {},
"source": [
"But, if we look at just the raw loss rates, we see a very different distribution. This suggests to me that we are perhaps elevating the urban areas in our wealth-neutral metric. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b10adc64-3dae-429b-a0d3-b54f701587df",
"metadata": {},
"outputs": [],
"source": [
"nri_with_flag = (\n",
" nri_full.set_index(\"TRACTFIPS\")\n",
" .merge(\n",
" urban_rural_from_geocorr.set_index(\"GEOID10_TRACT\"),\n",
" left_index=True,\n",
" right_index=True,\n",
" how=\"left\",\n",
" )\n",
" .reset_index()\n",
")\n",
"\n",
"nri_with_flag[\"total_ag_loss\"] = nri_with_flag.filter(like=\"EALA\").sum(axis=1)\n",
"nri_with_flag[\"total_ag_loss_pctile\"] = nri_with_flag[\"total_ag_loss\"].rank(\n",
" pct=True\n",
")\n",
"\n",
"nri_with_flag.groupby(\"Urban Heuristic Flag\")[\"total_ag_loss_pctile\"].mean()"
]
},
{
"cell_type": "markdown",
"id": "ae3bd6f6-431a-4b73-a81d-a3e4eb14d708",
"metadata": {},
"source": [
"When we look at the distribution of agricultural value in census tracts that are urban and rural, we see that the agricultural value for urban tracts is quite skewed."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "38a8e0a0-0cc4-43c9-b0bb-2062da59a639",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
0.00
\n",
"
0.10
\n",
"
0.20
\n",
"
0.30
\n",
"
0.40
\n",
"
0.50
\n",
"
0.60
\n",
"
0.70
\n",
"
0.80
\n",
"
0.90
\n",
"
\n",
"
\n",
"
Urban Heuristic Flag
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0.00
\n",
"
0.00
\n",
"
407,226.75
\n",
"
1,305,567.65
\n",
"
2,586,000.00
\n",
"
4,411,909.10
\n",
"
7,385,163.62
\n",
"
11,582,526.63
\n",
"
18,205,814.38
\n",
"
30,706,464.84
\n",
"
56,067,604.96
\n",
"
\n",
"
\n",
"
1.00
\n",
"
0.00
\n",
"
0.00
\n",
"
0.00
\n",
"
0.00
\n",
"
141.35
\n",
"
1,812.91
\n",
"
9,755.31
\n",
"
44,319.94
\n",
"
202,972.50
\n",
"
1,060,793.40
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0.00 0.10 0.20 0.30 0.40 \\\n",
"Urban Heuristic Flag \n",
"0.00 0.00 407,226.75 1,305,567.65 2,586,000.00 4,411,909.10 \n",
"1.00 0.00 0.00 0.00 0.00 141.35 \n",
"\n",
" 0.50 0.60 0.70 0.80 \\\n",
"Urban Heuristic Flag \n",
"0.00 7,385,163.62 11,582,526.63 18,205,814.38 30,706,464.84 \n",
"1.00 1,812.91 9,755.31 44,319.94 202,972.50 \n",
"\n",
" 0.90 \n",
"Urban Heuristic Flag \n",
"0.00 56,067,604.96 \n",
"1.00 1,060,793.40 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.options.display.float_format = \"{:,.2f}\".format\n",
"nri_with_flag.groupby(\"Urban Heuristic Flag\")[\"AGRIVALUE\"].quantile(\n",
" q=np.arange(0, 1, step=0.1)\n",
").unstack()"
]
},
{
"cell_type": "markdown",
"id": "8aed6062-9503-4120-bab8-f840cb524365",
"metadata": {},
"source": [
"## Updating the metric\n",
"\n",
"So we clip the values such that agrivalue is defined as the maximum of the tract's agricultural value AND the 10th percentile of rural tracts' agrivalues. When we do that, we see that a lot more (proportionally) rural tracts exceed the 90th percentile. "
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2b3a3b3e-76c2-4b6b-b96b-d439580de592",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"