{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "20aa3891", "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "import numpy as np\n", "import pandas as pd\n", "import csv\n", "import sys\n", "import os\n", "\n", "module_path = os.path.abspath(os.path.join(\"..\"))\n", "if module_path not in sys.path:\n", " sys.path.append(module_path)\n", "\n", "from etl.sources.census.etl_utils import get_state_fips_codes\n", "from utils import unzip_file_from_url, remove_all_from_dir\n", "\n", "DATA_PATH = Path.cwd().parent / \"data\"\n", "TMP_PATH = DATA_PATH / \"tmp\"\n", "HUD_RECAP_CSV_URL = \"https://opendata.arcgis.com/api/v3/datasets/56de4edea8264fe5a344da9811ef5d6e_0/downloads/data?format=csv&spatialRefId=4326\"\n", "CSV_PATH = DATA_PATH / \"dataset\" / \"hud_recap\"\n", "\n", "# Definining some variable names\n", "GEOID_TRACT_FIELD_NAME = \"GEOID10_TRACT\"\n", "HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME = \"hud_recap_priority_community\"" ] }, { "cell_type": "code", "execution_count": null, "id": "b9455da5", "metadata": {}, "outputs": [], "source": [ "# Data from https://hudgis-hud.opendata.arcgis.com/datasets/HUD::racially-or-ethnically-concentrated-areas-of-poverty-r-ecaps/about\n", "df = pd.read_csv(HUD_RECAP_CSV_URL, dtype={\"GEOID\": \"string\"})\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "ca63e66c", "metadata": {}, "outputs": [], "source": [ "# Rename some fields\n", "df.rename(\n", " columns={\n", " \"GEOID\": GEOID_TRACT_FIELD_NAME,\n", " # Interestingly, there's no data dictionary for the RECAP data that I could find.\n", " # However, this site (http://www.schousing.com/library/Tax%20Credit/2020/QAP%20Instructions%20(2).pdf)\n", " # suggests:\n", " # \"If RCAP_Current for the tract in which the site is located is 1, the tract is an R/ECAP. If RCAP_Current is 0, it is not.\"\n", " \"RCAP_Current\": HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME,\n", " },\n", " inplace=True,\n", ")\n", "\n", "# Convert to boolean\n", "df[HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME] = df[\n", " HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME\n", "].astype(\"bool\")\n", "\n", "df[HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME].value_counts()\n", "\n", "df.sort_values(by=GEOID_TRACT_FIELD_NAME, inplace=True)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "9fa2077a", "metadata": {}, "outputs": [], "source": [ "# write csv\n", "CSV_PATH.mkdir(parents=True, exist_ok=True)\n", "\n", "# Drop unnecessary columns.\n", "df[[GEOID_TRACT_FIELD_NAME, HUD_RECAP_PRIORITY_COMMUNITY_FIELD_NAME]].to_csv(\n", " CSV_PATH / \"usa.csv\", index=False\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" } }, "nbformat": 4, "nbformat_minor": 5 }