import pathlib import pandas as pd import xlsxwriter from data_pipeline.etl.sources.census.etl_utils import get_state_information from data_pipeline.score import field_names # Some excel parameters DEFAULT_COLUMN_WIDTH = 18 # the 31 is a limit from excel on how long the tab name can be MSFT_TAB_NAME_LIMIT = 31 # FIPS information DATA_PATH = pathlib.Path(__file__).parents[2] / "data" FIPS_MAP = ( get_state_information(data_path=DATA_PATH) .set_index("fips")["state_abbreviation"] .to_dict() ) def validate_new_data( file_path: str, score_col: str, geoid: str = field_names.GEOID_TRACT_FIELD ): """Ensures user provided data meets the constraints. Constraints are: (1) Boolean series for score column (2) GEOID column is named the same thing as in the rest of our code Note this only reads the first 10 rows of the file for speed """ checking_df = pd.read_csv( file_path, usecols=[score_col, geoid], dtype={geoid: str}, nrows=10 ) assert ( geoid in checking_df.columns ), f"Error: change your geoid column in the data to {field_names.GEOID_TRACT_FIELD}" assert ( checking_df[score_col].nunique() <= 3 ), f"Error: there are too many values possible in {score_col}" assert (True in checking_df[score_col].unique()) | ( False in checking_df[score_col].unique() ), f"Error: {score_col} should be a boolean" def read_file( file_path: str, columns: list, geoid: str = field_names.GEOID_TRACT_FIELD ) -> pd.DataFrame: """Reads standardized csvs in Parameters: file_path: the file to read columns: the columns to include geoid: the geoid column name (if we change this in usa.csv, will need to change this slightly) Returns: dataframe that has been read in with geographic index """ assert ( geoid == field_names.GEOID_TRACT_FIELD ), f"Field name specified for geoid is incorrect. Use {field_names.GEOID_TRACT_FIELD}" return pd.read_csv( file_path, usecols=columns + [geoid], dtype={geoid: str} ).set_index(geoid) def produce_summary_stats( joined_df: pd.DataFrame, comparator_column: str, score_column: str, population_column: str, geoid_column: str = field_names.GEOID_TRACT_FIELD, ) -> pd.DataFrame: """Produces high-level overview dataframe Parameters: joined_df: the big df comparator_column: the column name for the comparator identification bool score_column: the column name for the CEJST score bool population_column: the column that includes population count per tract geoid_column: the geoid10_tract column Returns: population: the high-level overview df """ # Because this reports high-level statistics across all census tracts, it # makes sense for the statistics to force all census tracts to be included. temp_joined_df = joined_df.fillna({comparator_column: "missing"}) population_df = temp_joined_df.groupby( [comparator_column, score_column] ).agg({population_column: ["sum"], geoid_column: ["count"]}) population_df["share_of_tracts"] = ( population_df[geoid_column] / population_df[geoid_column].sum() ) population_df["share_of_population_in_tracts"] = ( population_df[population_column] / population_df[population_column].sum() ) population_df.columns = [ "Population", "Count of tracts", "Share of tracts", "Share of population", ] return population_df def get_demo_series( grouping_column: str, joined_df: pd.DataFrame, demo_columns: list, ) -> pd.DataFrame: """Helper function to produce demographic information""" # To preserve np.nan, we drop all nans full_df = joined_df.dropna(subset=[grouping_column]) return ( full_df[full_df[grouping_column]][demo_columns] .mean() .T.rename(grouping_column) ) def get_tract_level_grouping( joined_df: pd.DataFrame, score_column: str, comparator_column: str, demo_columns: list, keep_missing_values: bool = True, ) -> pd.DataFrame: """Function to produce segmented statistics (tract level) Here, we are thinking about the following segments: 1. CEJST and comparator 2. Not CEJST and comparator 3. Not CEJST and not comparator 4. CEJST and not comparator If "keep_missing_values" flag: 5. Missing from CEJST and comparator (this should never be true - it would be a tract we had not seen in CEJST!) 6. Missing from comparator and not highlighted by CEJST 7. Missing from comparator and highlighted by CEJST This will make sure that comparisons are "apples to apples". """ group_list = [score_column, comparator_column] use_df = joined_df.copy() if keep_missing_values: use_df = use_df.fillna({score_column: "nan", comparator_column: "nan"}) grouping_df = use_df.groupby(group_list)[demo_columns].mean().reset_index() # this will work whether or not there are "nans" present grouping_df[score_column] = grouping_df[score_column].map( { True: "CEJST", False: "Not CEJST", "nan": "No CEJST classification", } ) grouping_df[comparator_column] = grouping_df[comparator_column].map( { True: "Comparator", False: "Not Comparator", "nan": "No Comparator classification", } ) return grouping_df.set_index([score_column, comparator_column]).T def format_multi_index_for_excel( df: pd.DataFrame, rename_str: str = "Variable" ) -> pd.DataFrame: """Helper function for multiindex printing""" df = df.reset_index() df.columns = [rename_str] + [ ", ".join(col_tuple).strip() for col_tuple in df.columns[1:].to_flat_index() ] return df def get_final_summary_info( population: pd.DataFrame, comparator_file: str, geoid_col: str, ) -> tuple[pd.DataFrame, str]: """Creates summary table. This creates a series that tells us what share (%) of census tracts identified by the comparator are also in CEJST and what states the comparator covers. """ try: comparator_and_cejst_proportion_series = ( population.loc[(True, True)] / population.loc[(True,)].sum() ) except KeyError: # for when we are looking at a disjoint set, like donut holes comparator_and_cejst_proportion_series = pd.DataFrame() # we pull all fips codes from the comparator column -- this is a very quick # read states_represented = ( pd.read_csv( comparator_file, usecols=[geoid_col], dtype={geoid_col: str} )[geoid_col] .str[:2] .unique() ) # We join all states into a single string here so they can be printed in a single # cell in the excel file. states = ", ".join( [ FIPS_MAP[state] if (state in FIPS_MAP) else f"Comparator code missing: (fips {state})" for state in states_represented ] ) return comparator_and_cejst_proportion_series, states def construct_weighted_statistics( input_df: pd.DataFrame, weighting_column: str, demographic_columns: list, population_column: str, ) -> pd.DataFrame: """Function to produce population weighted stats Parameters: input_df: this gets copied and is the big frame weighting_column: the column to group by for the comparator weights (e.g., grouped by this column, the sum of the weights is 1) demographic_columns: the columns to get weighted stats for population_column: the population column Returns: population-weighted comparator statistics """ comparator_weighted_joined_df = input_df.copy() comparator_weighted_joined_df[ "tmp_weight" ] = comparator_weighted_joined_df.groupby(weighting_column)[ population_column ].transform( lambda x: x / x.sum() ) comparator_weighted_joined_df[ demographic_columns ] = comparator_weighted_joined_df[demographic_columns].transform( lambda x: x * comparator_weighted_joined_df["tmp_weight"] ) return ( comparator_weighted_joined_df.groupby(weighting_column)[ demographic_columns ] .sum() .T ).rename(columns={True: weighting_column, False: "not " + weighting_column}) def write_excel_tab( writer: pd.ExcelWriter, worksheet_name: str, df: pd.DataFrame, text_format: xlsxwriter.format.Format, use_index: bool = True, ): """Helper function to set tab width""" df.to_excel(writer, sheet_name=worksheet_name, index=use_index) worksheet = writer.sheets[worksheet_name] for i, column_name in enumerate(df.columns): # We set variable names to be extra wide, all other columns can take # cues from their headers if not column_name == "Variable": worksheet.set_column(i, i + 1, len(column_name) + 2, text_format) else: worksheet.set_column(i, i + 1, DEFAULT_COLUMN_WIDTH, text_format) def write_excel_tab_about_comparator_scope( writer: pd.ExcelWriter, worksheet_name: str, comparator_and_cejst_proportion_series: pd.Series, text_format: xlsxwriter.format.Format, merge_format: xlsxwriter.format.Format, states_text: str, ): """Writes single tab for the excel file about high level comparator stats""" comparator_and_cejst_proportion_series.to_excel( writer, sheet_name=worksheet_name ) worksheet = writer.sheets[worksheet_name[:MSFT_TAB_NAME_LIMIT]] worksheet.set_column(0, 1, DEFAULT_COLUMN_WIDTH, text_format) # merge the cells for states text row_merge = len(comparator_and_cejst_proportion_series) + 2 # changes the row height based on how long the states text is worksheet.set_row(row_merge, len(states_text) // 2) worksheet.merge_range( first_row=row_merge, last_row=row_merge, first_col=0, last_col=1, data=states_text, cell_format=merge_format, ) def write_single_comparison_excel( output_excel: str, population_df: pd.DataFrame, tract_level_by_identification_df: pd.DataFrame, population_weighted_stats_df: pd.DataFrame, tract_level_by_grouping_formatted_df: pd.DataFrame, comparator_and_cejst_proportion_series: pd.Series, states_text: str, ): """Writes the comparison excel file. Writing excel from python is always a huge pain. Making the functions truly generalizable is not worth the pay off and (in my experience) is extremely hard to maintain. """ with pd.ExcelWriter(output_excel) as writer: workbook = writer.book text_format = workbook.add_format( { "bold": False, "text_wrap": True, "valign": "middle", "num_format": "#,##0.00", } ) merge_format = workbook.add_format( { "border": 1, "align": "center", "valign": "vcenter", "text_wrap": True, } ) write_excel_tab( writer=writer, worksheet_name="Summary", df=population_df.reset_index(), text_format=text_format, use_index=False, ) write_excel_tab( writer=writer, worksheet_name="Tract level stats", df=tract_level_by_identification_df.reset_index().rename( columns={"index": "Description of variable"} ), text_format=text_format, use_index=False, ) write_excel_tab( writer=writer, worksheet_name="Population level stats", df=population_weighted_stats_df.reset_index().rename( columns={"index": "Description of variable"} ), text_format=text_format, use_index=False, ) write_excel_tab( writer=writer, worksheet_name="Segmented tract level stats", df=tract_level_by_grouping_formatted_df, text_format=text_format, use_index=False, ) if not comparator_and_cejst_proportion_series.empty: write_excel_tab_about_comparator_scope( writer=writer, worksheet_name="Comparator and CEJST overlap", comparator_and_cejst_proportion_series=comparator_and_cejst_proportion_series.rename( "Comparator and CEJST overlap" ), text_format=text_format, states_text=states_text, merge_format=merge_format, )