Adding DOT composite to travel score (#1820)

This adds the DOT dataset to the ETL and to the score. Note that currently we take a percentile of an average of percentiles.
This commit is contained in:
Emma Nechamkin 2022-08-16 14:44:39 -04:00 committed by GitHub
commit ebac552d75
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
17 changed files with 553 additions and 354 deletions

View file

@ -156,3 +156,16 @@ datasets:
field_type: float
include_in_tiles: true
include_in_downloadable_files: true
- long_name: "DOT Travel Disadvantage Index"
short_name: "DOT"
module_name: "travel_composite"
input_geoid_tract_field_name: "GEOID10_TRACT"
load_fields:
- short_name: "travel_burden"
df_field_name: "TRAVEL_BURDEN_FIELD_NAME"
long_name: "DOT Travel Barriers Score"
field_type: float
include_in_tiles: true
include_in_downloadable_files: true
create_percentile: true

View file

@ -296,6 +296,9 @@ TILES_SCORE_COLUMNS = {
field_names.FPL_200_SERIES: "FPL200S",
## Low high school for t&wd
field_names.WORKFORCE_SOCIO_INDICATORS_EXCEEDED: "M_WKFC_EBSI",
field_names.DOT_BURDEN_PCTILE_THRESHOLD: "TD_ET",
field_names.DOT_TRAVEL_BURDEN_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "TD_PFS"
## FPL 200 and low higher ed for all others should no longer be M_EBSI, but rather
## FPL_200 (there is no higher ed in narwhal)
}
@ -348,4 +351,5 @@ TILES_SCORE_FLOAT_COLUMNS = [
field_names.WASTEWATER_FIELD + field_names.PERCENTILE_FIELD_SUFFIX,
field_names.COLLEGE_NON_ATTENDANCE_FIELD,
field_names.COLLEGE_ATTENDANCE_FIELD,
field_names.DOT_TRAVEL_BURDEN_FIELD + field_names.PERCENTILE_FIELD_SUFFIX,
]

View file

@ -8,6 +8,9 @@ from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.sources.national_risk_index.etl import (
NationalRiskIndexETL,
)
from data_pipeline.etl.sources.dot_travel_composite.etl import (
TravelCompositeETL,
)
from data_pipeline.score.score_runner import ScoreRunner
from data_pipeline.score import field_names
from data_pipeline.etl.score import constants
@ -37,6 +40,7 @@ class ScoreETL(ExtractTransformLoad):
self.census_2010_df: pd.DataFrame
self.child_opportunity_index_df: pd.DataFrame
self.hrs_df: pd.DataFrame
self.dot_travel_disadvantage_df: pd.DataFrame
def extract(self) -> None:
logger.info("Loading data sets from disk.")
@ -115,6 +119,9 @@ class ScoreETL(ExtractTransformLoad):
# Load FEMA national risk index data
self.national_risk_index_df = NationalRiskIndexETL.get_data_frame()
# Load DOT Travel Disadvantage
self.dot_travel_disadvantage_df = TravelCompositeETL.get_data_frame()
# Load GeoCorr Urban Rural Map
geocorr_urban_rural_csv = (
constants.DATA_PATH / "dataset" / "geocorr" / "usa.csv"
@ -334,6 +341,7 @@ class ScoreETL(ExtractTransformLoad):
self.census_2010_df,
self.child_opportunity_index_df,
self.hrs_df,
self.dot_travel_disadvantage_df,
]
# Sanity check each data frame before merging.
@ -416,6 +424,7 @@ class ScoreETL(ExtractTransformLoad):
field_names.HEALTHY_FOOD_FIELD,
field_names.IMPENETRABLE_SURFACES_FIELD,
field_names.UST_FIELD,
field_names.DOT_TRAVEL_BURDEN_FIELD,
field_names.AGRICULTURAL_VALUE_BOOL_FIELD,
field_names.POVERTY_LESS_THAN_200_FPL_IMPUTED_FIELD,
]

File diff suppressed because one or more lines are too long