Issue 675 & 676: Adding life expectancy and DOE energy burden data (#683)

* Adding two new data sources.
This commit is contained in:
Lucas Merrill Brown 2021-09-15 09:59:28 -05:00 committed by GitHub
commit e94d05882c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 240 additions and 26 deletions

View file

@ -26,7 +26,9 @@ class ScoreETL(ExtractTransformLoad):
# A few specific field names
# TODO: clean this up, I name some fields but not others.
self.UNEMPLOYED_FIELD_NAME: str = "Unemployed civilians (percent)"
self.LINGUISTIC_ISOLATION_FIELD_NAME: str = "Linguistic isolation (percent)"
self.LINGUISTIC_ISOLATION_FIELD_NAME: str = (
"Linguistic isolation (percent)"
)
self.HOUSING_BURDEN_FIELD_NAME: str = "Housing burden (percent)"
self.POVERTY_FIELD_NAME: str = (
"Poverty (Less than 200% of federal poverty line)"
@ -58,6 +60,12 @@ class ScoreETL(ExtractTransformLoad):
"Percent of individuals < 200% Federal Poverty Line"
)
# CDC life expectancy
self.LIFE_EXPECTANCY_FIELD_NAME = "Life expectancy (years)"
# DOE energy burden
self.ENERGY_BURDEN_FIELD_NAME = "Energy burden"
# There's another aggregation level (a second level of "buckets").
self.AGGREGATION_POLLUTION: str = "Pollution Burden"
self.AGGREGATION_POPULATION: str = "Population Characteristics"
@ -75,6 +83,8 @@ class ScoreETL(ExtractTransformLoad):
self.hud_housing_df: pd.DataFrame
self.cdc_places_df: pd.DataFrame
self.census_acs_median_incomes_df: pd.DataFrame
self.cdc_life_expectancy_df: pd.DataFrame
self.doe_energy_burden_df: pd.DataFrame
def data_sets(self) -> list:
# Define a named tuple that will be used for each data set input.
@ -166,6 +176,16 @@ class ScoreETL(ExtractTransformLoad):
renamed_field=self.MEDIAN_INCOME_FIELD_NAME,
bucket=None,
),
DataSet(
input_field=self.LIFE_EXPECTANCY_FIELD_NAME,
renamed_field=self.LIFE_EXPECTANCY_FIELD_NAME,
bucket=None,
),
DataSet(
input_field=self.ENERGY_BURDEN_FIELD_NAME,
renamed_field=self.ENERGY_BURDEN_FIELD_NAME,
bucket=None,
),
# The following data sets have buckets, because they're used in Score C
DataSet(
input_field="CANCER",
@ -325,6 +345,26 @@ class ScoreETL(ExtractTransformLoad):
low_memory=False,
)
# Load CDC life expectancy data
cdc_life_expectancy_csv = (
self.DATA_PATH / "dataset" / "cdc_life_expectancy" / "usa.csv"
)
self.cdc_life_expectancy_df = pd.read_csv(
cdc_life_expectancy_csv,
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
)
# Load DOE energy burden data
doe_energy_burden_csv = (
self.DATA_PATH / "dataset" / "doe_energy_burden" / "usa.csv"
)
self.doe_energy_burden_df = pd.read_csv(
doe_energy_burden_csv,
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
)
def _join_cbg_dfs(self, census_block_group_dfs: list) -> pd.DataFrame:
logger.info("Joining Census Block Group dataframes")
census_block_group_df = functools.reduce(
@ -566,21 +606,9 @@ class ScoreETL(ExtractTransformLoad):
)
df["Score H"] = df["Score H (communities)"].astype(int)
# df["80% AMI & 6% high school (communities)"] = (
# (df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
# & (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
# )
#
# df["FPL200>40% & 6% high school (communities)"] = (
# (df[self.POVERTY_LESS_THAN_200_FPL_FIELD_NAME] > 0.40)
# & (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
# )
df["NMTC (communities)"] = (
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
) | (
(df[self.POVERTY_LESS_THAN_100_FPL_FIELD_NAME] > 0.20)
)
) | (df[self.POVERTY_LESS_THAN_100_FPL_FIELD_NAME] > 0.20)
df["NMTC modified (communities)"] = (
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
@ -609,6 +637,8 @@ class ScoreETL(ExtractTransformLoad):
census_tract_dfs = [
self.hud_housing_df,
self.cdc_places_df,
self.cdc_life_expectancy_df,
self.doe_energy_burden_df
]
census_tract_df = self._join_tract_dfs(census_tract_dfs)